Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(9): 2450-2465, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36799515

RESUMEN

While many efforts have been devoted to understand variations in food web structure among terrestrial and aquatic ecosystems, the environmental factors influencing food web structure at large spatial scales remain hardly explored. Here, we compiled biodiversity inventories to infer food web structure of 67 French lakes using an allometric niche-based model and tested how environmental variables (temperature, productivity, and habitat) influence them. By applying a multivariate analysis on 20 metrics of food web topology, we found that food web structural variations are represented by two distinct complementary and independent structural descriptors. The first is related to the overall trophic diversity, whereas the second is related to the vertical structure. Interestingly, the trophic diversity descriptor was mostly explained by habitat size (26.7% of total deviance explained) and habitat complexity (20.1%) followed by productivity (dissolved organic carbon: 16.4%; nitrate: 9.1%) and thermal variations (10.7%). Regarding the vertical structure descriptor, it was mostly explained by water thermal seasonality (39.0% of total deviance explained) and habitat depth (31.9%) followed by habitat complexity (8.5%) and size (5.5%) as well as annual mean temperature (5.6%). Overall, we found that temperature, productivity, and habitat characteristics collectively shape lake food web structure. We also found that intermediate levels of productivity, high levels of temperature (mean and seasonality), as well as large habitats are associated with the largest and most complex food webs. Our findings, therefore, highlight the importance of focusing on these three components especially in the context of global change, as significant structural changes in aquatic food webs could be expected under increased temperature, pollution, and habitat alterations.


Asunto(s)
Ecosistema , Cadena Alimentaria , Lagos , Temperatura , Biodiversidad
2.
Mar Pollut Bull ; 98(1-2): 95-105, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26188429

RESUMEN

The intra-specific diversity and genetic structure within the Alexandrium pacificum Litaker (A. catenella - Group IV) populations along the Temperate Asian coasts, were studied among individuals isolated from Japan to China. The UPGMA dendrogram and FCA revealed the existence of 3 clusters. Assignment analysis suggested the occurrence of gene flows between the Japanese Pacific coast (cluster-1) and the Chinese Zhejiang coast (cluster-2). Human transportations are suspected to explain the lack of genetic difference between several pairs of distant Japanese samples, hardly explained by a natural dispersal mechanism. The genetic isolation of the population established in the Sea of Japan (cluster-3) suggested the existence of a strong ecological and geographical barrier. Along the Pacific coasts, the South-North current allows limited exchanges between Chinese and Japanese populations. The relationships between Temperate Asian and Mediterranean individuals suggested different scenario of large-scale dispersal mechanisms.


Asunto(s)
Dinoflagelados/genética , Genética de Población , Organismos Acuáticos/genética , China , Flujo Génico , Especies Introducidas , Japón , Repeticiones de Microsatélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA