Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 354: 368-393, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642252

RESUMEN

Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Humanos , Animales , Proteínas de Choque Térmico HSP27/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Proteínas de Choque Térmico/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Mitocondrias/metabolismo , Vesículas Extracelulares/metabolismo , Adenosina Trifosfato/metabolismo
2.
Front Cardiovasc Med ; 8: 734388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631832

RESUMEN

Background: Congenital heart disease (CHD) with single-ventricle (SV) physiology is now survivable with a three-stage surgical course ending with Fontan palliation. However, 10-year transplant-free survival remains at 39-50%, with ventricular dysfunction progressing to heart failure (HF) being a common sequela. For SV-CHD patients who develop HF, undergoing the surgical course would not be helpful and could even be detrimental. As HF risk cannot be predicted and metabolic defects have been observed in Ohia SV-CHD mice, we hypothesized that respiratory defects in peripheral blood mononuclear cells (PBMCs) may allow HF risk stratification in SV-CHD. Methods: SV-CHD (n = 20), biventricular CHD (BV-CHD; n = 16), or healthy control subjects (n = 22) were recruited, and PBMC oxygen consumption rate (OCR) was measured using the Seahorse Analyzer. Respiration was similarly measured in Ohia mouse heart tissue. Results: Post-Fontan SV-CHD patients with HF showed higher maximal respiratory capacity (p = 0.004) and respiratory reserve (p < 0.0001), parameters important for cell stress adaptation, while the opposite was found for those without HF (reserve p = 0.037; maximal p = 0.05). This was observed in comparison to BV-CHD or healthy controls. However, respiration did not differ between SV patients pre- and post-Fontan or between pre- or post-Fontan SV-CHD patients and BV-CHD. Reminiscent of these findings, heart tissue from Ohia mice with SV-CHD also showed higher OCR, while those without CHD showed lower OCR. Conclusion: Elevated mitochondrial respiration in PBMCs is correlated with HF in post-Fontan SV-CHD, suggesting that PBMC respiration may have utility for prognosticating HF risk in SV-CHD. Whether elevated respiration may reflect maladaptation to altered hemodynamics in SV-CHD warrants further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA