Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 352: 141300, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286312

RESUMEN

The search for eco-friendly substitutes for traditional plastics has led to the production of biodegradable bioplastics. However, concerns have been raised about the impact of bioplastic biodegradation on soil health. Despite these concerns, the potential negative consequences of bioplastics during various stages of biodegradation remain underexplored. Therefore, this study aims to investigate the impact of micro-bioplastics made of poly-3-hydroxybutyrate (P3HB) on the properties of three different soils. In our ten-month experiment, we investigated the impact of poly-3-hydroxybutyrate (P3HB) on Chernozem, Cambisol, and Phaeozem soils. Our study focused on changes in soil organic matter (SOM), microbial activity, and the level of soil carbon and nitrogen. The observed changes indicated an excessive level of biodegradation of SOM after the soils were enriched with micro-particles of P3HB, with concentrations ranging from 0.1% to 3%. The thermogravimetric analysis confirmed the presence of residual P3HB (particularly in the 3% treatment) and underscored the heightened biodegradation of SOM, especially in the more stable SOM fractions. This was notably evident in Phaeozem soils, where even the stable SOM pool was affected. Elemental analysis revealed changes in soil organic carbon content following P3HB degradation, although nitrogen levels remained constant. Enzymatic activity was found to vary with soil type and responded differently across P3HB concentration levels. Our findings confirmed that P3HB acts as a bioavailable carbon source. Its biodegradation stimulates the production of enzymes, which in turn affects various soil elements, indicating complex interactions within the soil ecosystem.


Asunto(s)
Ecosistema , Polihidroxibutiratos , Suelo , Carbono/análisis , Poliésteres , Hidroxibutiratos , Biopolímeros , Nitrógeno/análisis
2.
Zootaxa ; 5263(3): 335-364, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37044982

RESUMEN

We revise the Portuguese spiders of the genus Harpactea Bristowe, 1939 (Araneae: Dysderidae). The following seven new species are described: H. adicensis sp. nov., H. crespoi sp. nov., H. dolanskyi sp. nov., H. henriquesi sp. nov., H. korenkoi sp. nov., H. krejcii sp. nov. and H. pekari sp. nov. In three species, H. algarvensis Ferrández, 1990, H. minoccii Ferrández, 1982 and H. tavirensis Wunderlich, 2020 the females are described for the first time. The Portuguese Harpactea spiders belong to two species groups, namely the hombergi group and the corticalis group (sensu Deeleman-Reinhold 1993). The majority of the Portuguese representatives of the corticalis group probably constitute a monophyletic group endemic for the Iberian peninsula, the minoccii subgroup Ferrández, 1990. The synapomorphy of this clade is the unique position of partners during copulation: the male grasps one of the female's chelicerae between his chelicerae. The males' chelicerae are morphologically adapted for this behaviour. Due to this unusual position during copulation the female genitalia are more distant from the male than in other Harpactea species. Therefore, the pedipalps are more elongated . Furthermore, the males of this subgroup possess larger basal part of male copulatory organ (the tegulum), where the ejaculate is stored before copulation. We observed that the males of this subgroup invest significantly more time into single copulation than the other representatives of the corticalis group with smaller tegulum. Therefore, enlargement of the tegulum might reflect different sperm competition strategy, in which males invest more ejaculate in each copulation. In Portugal, Harpactea spiders are frequently found under woody plants that produce slowly decomposing leaf litter, usually Quercus spp., or introduced Eucalyptus sp. These spiders require slightly humid substratum.


Asunto(s)
Arañas , Femenino , Masculino , Animales , Portugal , Semillas , Madera , Copulación , Distribución Animal
3.
Sci Rep ; 13(1): 6943, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117271

RESUMEN

The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.


Asunto(s)
Coxiellaceae , Rickettsia , Arañas , Animales , Arañas/microbiología , Simbiosis , Especificidad del Huésped , Drosophila
4.
Sci Rep ; 12(1): 20703, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456609

RESUMEN

Arbuscular mycorrhizal (AM) fungi can support the establishment of mycotrophic plants in new environments. However, the role of mycorrhizal symbiosis in interactions between perennial and weedy annual plants is not well understood. In our current study, we examine how widespread generalist AM fungi and soil disturbance, including disturbance of AM fungal networks (CMNs), affect the performance of two late-successional perennial plants of Central Europe, Senecio jacobaea and Crepis biennis, co-occurring with weedy annual forbs, Conyza canadensis and Erigeron annuus. Although presence of weedy annual E. annuus or C. canadensis did not affect the performance of the paired perennials, AM fungi supported perennial C. biennis in competition with weedy annual E. annuus. However, this AM-aided underpinning was independent of disturbance of CMNs. Conversely, although AM fungi benefited perennial S. jacobaea, this did not affect its competitive abilities when grown with weedy annual C. canadensis. Similarly, soil disturbance, independent of AM fungal presence, improved plant tissue P and biomass production of S. jacobaea, but not its competitive abilities. Our results show AM fungi may be advantageous for perennial plants growing in competition with weedy annual plants. Therefore, maintaining healthy soils containing an abundance of AM fungi, may encourage late successional perennial plants, potentially limiting establishment of weedy annual plant species.


Asunto(s)
Abuso de Marihuana , Micorrizas , Senecio , Malezas , Suelo
6.
Environ Microbiol Rep ; 14(5): 732-741, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35924424

RESUMEN

Arbuscular mycorrhizal fungi (AMF) provide crucial support for the establishment of plants in novel environments. We hypothesized that the OTU/genus richness and diversity of soil- and root-associated AMF associated with alien plant species in their exotic ranges are lower than those in their native ranges. We examined the root-associated and soil-dwelling AMF of 11 invasive plant species in their native and exotic ranges in the United States and Europe by DNA sequencing of the ITS2 locus. Examined root-associated AMF assemblages were simplified, which manifested as the loss of several AMF genera in the exotic ranges of the plants. These fungal assemblages were also characterized by greater dominance and simplification of the fungal assemblages. The dominant fungal genera were present regardless of whether their host plants were in their native or exotic ranges. Interestingly, both the native and invaded soils hosted diverse local AMF assemblages. Therefore, alien plant invasions were not limited to soils with low AMF diversity. Some AMF taxa could be context-dependent passengers rather than drivers of alien plant invasions. Further studies should identify functions of AMF missing or less abundant in roots of plants growing in exotic ranges.


Asunto(s)
Micorrizas , Especies Introducidas , Micorrizas/genética , Raíces de Plantas/microbiología , Plantas , Suelo , Microbiología del Suelo
7.
PLoS One ; 17(7): e0261695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35797267

RESUMEN

The mygalomorph spiders of the family Atypidae are among the most archaic spiders. The genus Atypus Latreille, 1804 occurs in Eurasia and northern Africa, with a single enigmatic species, Atypus snetsingeri Sarno, 1973, known only from a small area in southeastern Pennsylvania in eastern USA. A close relationship to European species could be assumed based on geographic proximity, but A. snetsingeri more closely resembled Asian species. This study was undertaken to learn more about the genetics of A. snetsingeri, its habitat requirements and natural history. Molecular markers (CO1 sequences) were compared to available data for other atypids and showed that A. snetsingeri is identical with A. karschi Dönitz, 1887 native to East Asia. Natural history parameters in Pennsylvania were also similar in every respect to A. karschi in Japan, therefore, we propose that the spider is an introduced species and the specific epithet snetsingeri is relegated to a junior synonym of A. karschi. Cytogenetic analysis showed an X0 sex chromosome system (42 chromosomes in females, 41 in males) and we also detected nucleolus organizing regions and heterochromatin, the latter for the first time in the Atypoidea. In Pennsylvania the spider is found in a variety of habitats, from forests to suburban shrubbery, where the above-ground webs are usually attached vertically to trees, shrubs, or walls, although other webs are oriented horizontally near the ground. Prey include millipedes, snails, woodlice, carabid beetles and earthworms. Atypus karschi is the first known case of an introduced purse-web spider. It is rarely noticed but well-established within its range in southeastern Pennsylvania.


Asunto(s)
Arañas , Animales , Ecosistema , Femenino , Bosques , Masculino , Pennsylvania , Cromosomas Sexuales , Arañas/genética
8.
Environ Sci Technol ; 56(15): 10732-10742, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35816335

RESUMEN

Adverse effects of microplastics on soil abiotic properties have been attributed to changes in the soil structure. Notably, however, the effects on the supramolecular structure of soil organic matter (SOM) have been overlooked, despite their key role in most soil properties. This work accordingly investigated the influence of plastic residues at various concentrations on the SOM supramolecular structure and soil water properties. To model plastic residues of micro-bioplastics, spherical or spherical-like poly-3-hydroxybutyrate (PHB) was used, while polyethylene terephthalate (PET) was used as a model of conventional microplastics. The results suggest that both types of plastic residues affect SOM properties, including physical stability (represented by water molecule bridges), water binding (represented by decreased desorption enthalpy or faster desorption), and the stability of SOM aliphatic crystallites. The results further showed that the polyester-based microplastics and micro-bioplastics affected the SOM abiotic characteristics and that therefore the observed effects cannot be attributed solely to changes in the whole soil structure. Notably, similar adverse effects on SOM were observed for both tested plastic residues, although the effect of PHB was less pronounced compared to that of PET.


Asunto(s)
Microplásticos , Suelo , Hidroxibutiratos , Plásticos , Poliésteres , Tereftalatos Polietilenos , Suelo/química , Agua
9.
Microbiol Spectr ; 10(1): e0195421, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35170999

RESUMEN

Three difficult-to-cultivate, strictly anaerobic strains, AN20T, AN421T, and AN502, were analyzed within a project studying possible probiotics for newly hatched chickens. Phylogenetic analyses showed that strains AN20T, AN421T, and AN502 formed two well-separated phylogenetic lineages in all phylogenetic and phylogenomic trees comprising members of the family Bacteroidaceae. Comparison to reference genomes of type species Bacteroides fragilis NCTC 9343T, Phocaeicola abscessus CCUG 55929T, and Capsularis zoogleoformans ATCC 33285T showed low relatedness based on the calculated genome-to-genome distance and orthologous average nucleotide identity. Analysis of fatty acid profiles showed iso-C15:0, anteiso-C15:0, C16:0, C18:1ω9c, and iso-C17:0 3OH as the major fatty acids for all three strains and additionally C16:0 3OH for AN421T and AN502. A specific combination of respiratory quinones different from related taxa was found in analyzed strains, MK-5 plus MK-11 in strain AN20T and MK-5 plus MK-10 in strains AN421T and AN502. Strains AN421T and AN502 harbor complete CRISPR loci with CRISPR array, type II-C, accompanied by a set of cas genes (cas9, cas1, and cas2) in close proximity. Interestingly, strain AN20T was found to harbor two copies of nimB gene with >95% similarity to nimB of B. fragilis, suggesting a horizontal gene transfer between these taxa. In summary, three isolates characterized in this study represent two novel species, which we proposed to be classified in two novel genera of the family Bacteroidaceae, for which the names Paraphocaeicola brunensis sp. nov. (AN20T = CCM 9041T = DSM 111154T) and Caecibacteroides pullorum sp. nov. (AN421T= CCM 9040T = DSM 111155T) are proposed. IMPORTANCE This study represents follow-up research on three difficult-to-cultivate anaerobic isolates originally isolated within a project focused on strains that are able to stably colonize newly hatched chickens, thus representing possible probiotics. This project is exceptional in that it successfully isolates several miscellaneous strains that required modified and richly supplemented anaerobic media, as information on many gut-colonizing bacteria is based predominantly on metagenomic studies. Superior colonization of newly hatched chickens by Bacteroides spp., Phocaeicola spp., or related taxa can be considered of importance for development of future probiotics. Although different experiments can also be performed with provisionally characterized isolates, precise taxonomical definition is necessary for subsequent broad communication. The aim of this study is therefore to thoroughly characterize these isolates that represent novel genera and precisely determine their taxonomic position among related taxa to facilitate further research and communication involving these strains.


Asunto(s)
Proteínas Bacterianas/genética , Bacteroidaceae/genética , Bacteroides fragilis/genética , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Filogenia , Animales , Antibacterianos , Técnicas de Tipificación Bacteriana , Bacteroidaceae/clasificación , Bacteroidaceae/efectos de los fármacos , Bacteroidaceae/aislamiento & purificación , Bacteroides fragilis/clasificación , Bacteroides fragilis/efectos de los fármacos , Bacteroides fragilis/aislamiento & purificación , Ciego/microbiología , Farmacorresistencia Microbiana , ARN Ribosómico 16S
10.
Sci Rep ; 11(1): 12548, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131156

RESUMEN

An important goal of sustainable agriculture is to maintain soil quality. Soil aggregation, which can serve as a measure of soil quality, plays an important role in maintaining soil structure, fertility, and stability. The process of soil aggregation can be affected through impacts on biotic and abiotic factors. Here, we tested whether soil management involving application of organic and mineral fertilizers could significantly improve soil aggregation and if variation among differently fertilized soils could be specifically attributed to a particular biotic and/or abiotic soil parameter. In a field experiment within Central Europe, we assessed stability of 1-2 mm soil aggregates together with other parameters of soil samples from differently fertilized soils. Application of compost and digestates increased stability of soil aggregates. Most of the variation in soil aggregation caused by different fertilizers was associated with soil organic carbon lability, occurrence of aromatic functional groups, and variations in abundance of eubacteria, total glomalins, concentrations of total S, N, C, and hot water extractable C. In summary, we have shown that application of compost and digestates improves stability of soil aggregates and that this is accompanied by increased soil fertility, decomposition resistance, and abundance of total glomalins and eubacteria. These probably play significant roles in increasing stability of soil aggregates.

11.
Sci Rep ; 10(1): 20287, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219310

RESUMEN

In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.


Asunto(s)
Echinops (Planta)/microbiología , Glomeromycota/fisiología , Especies Introducidas , Inula/microbiología , Micorrizas/fisiología , Echinops (Planta)/fisiología , Europa (Continente) , Pradera , Inula/fisiología , Microbiología del Suelo
12.
Sci Total Environ ; 745: 140975, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32712500

RESUMEN

Currently, non-biodegradable oil-based plastics are gradually being replaced by bio-based biodegradable plastics to prevent the formation of microplastics. For biodegradable materials to decompose completely, however, they require specific conditions that are rarely met in ecosystems. Paradoxically, this may lead to the fast production of microplastics from biodegradable materials, i.e. micro-bioplastics. Until recently, the scientific focus has been solely on the estimation of conventional microplastics. As a result, there is a lack of analytical methods for determining the amount of micro-bioplastics in soil. In this review, we address this problem by summarising sample pre-treatments and analytical techniques suitable for the determination of conventional microplastics, which serve as inspiration for the determination of micro-bioplastics from polyhydroxybutyrates, polylactic acid and polybutylene adipate terephthalate in soil. The analytical techniques include both pyrolysis-based techniques, i.e. thermoanalytical and non-thermoanalytical approaches including sample pre-separation and respective detection limits. We conclude that due to the incomplete knowledge of the production rate of micro-bioplastics, fate, sorption properties and toxicity, it is necessary to develop and validate a rapid and suitable method for their determination. Indeed, the use of thermoanalytical approaches seems to be the most promising strategy. Furthermore, we suggest how the development and analysis of micro-bioplastics should be addressed in future research.

13.
Mycorrhiza ; 29(6): 567-579, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31724087

RESUMEN

Despite the crucial importance of arbuscular mycorrhizal fungi (AMF) for numerous processes within terrestrial ecosystems, knowledge of the determinants of AMF community structure still is limited, mainly because of the limited scope of the available individual case studies which often only include a few environmental variables. Here, we describe the AMF diversity of mid-European meadows (mown or regularly cut grasslands, or recently abandoned lands where grasslands established spontaneously) within a considerably heterogeneous landscape over a scale of several hundred kilometers with regard to macroclimatic, microclimatic, and soil parameters. We include data describing the habitat (including vegetation type), geography, and climate, and test their contribution to the structure of the AMF communities at a regional scale. We amplified and sequenced the ITS 2 region of the ribosomal DNA operon of the AMF from soil samples using nested PCR and Illumina pair-end amplicon sequencing. Habitat (especially soil pH) and geographical parameters (spatial distance, altitude, and longitude) were the main determinants of the structure of the AMF communities in the meadows at a regional scale, with the abundance of genera Septoglomus, Paraglomus, Archaeospora, Funneliformis, and Dominikia driving the main response. The effects of climate and vegetation type were not significant and were mainly encompassed within the geography and/or soil pH effects. This study illustrates how important it is to have a large set of environmental metadata to compare the importance of different factors influencing the AMF community structure at large spatial scales.


Asunto(s)
Micobioma , Micorrizas , ADN de Hongos , Ecosistema , Geografía , Pradera , Suelo , Microbiología del Suelo
14.
Sci Total Environ ; 694: 133822, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31756795

RESUMEN

Engineered and anthropogenic nanoparticles represent a new type of pollutants. Up until now, many studies have reported its adverse effect on biota, but the potential influence on the properties and functions of environmental compartments has largely been ignored. In this work, the effect of Pt nanoparticles on the functions and properties of model soil organic matter has been studied. Using differential scanning calorimetry and molecular modeling, the effect of a wide range of 3 nm Pt nanoparticles concentrations on water holding capacity, the strength of water binding, the stability of water molecule bridges and the content of aliphatic crystallites was studied. It was found that strong hydration of the nanoparticles influences the 3D water structural network and acts as kosmotropic agents (structure-forming) in water bridges and as chaotropic agents (i.e. water destructuring) in larger water volumes. Contrarily, the interaction with soil organic matter moieties partially eliminates these effects. As a result, the 3 nm Pt nanoparticles decreased the evaporation enthalpy of water in soil organic matter and supported soil desiccation. They also increased the strength of water molecule bridges and increased the soil structural rigidity even at low concentrations. Additionally, at high concentrations, they decreased the water content in soil organic matter and induced the aliphatic moieties' crystallization. It is concluded that the small-sized Pt nanoparticles, and perhaps other types as well, may affect the local physicochemical processes in soils and may consequently contribute to enhanced evapotranspiration and deterioration of soil functions.

15.
Sci Rep ; 9(1): 12272, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31439878

RESUMEN

Agroecosystems are subject to regular disturbances that cause extinction or migration of much of their fauna, followed by recolonization from surrounding refuges. In small-sized aeronaut spiders, such recolonization is potentiated by their ability to rappel and balloon. These are complex behaviors that we hypothesized to be affected by neurotoxins, namely, neonicotinoids. We tested this hypothesis using two common farmland spider species, Oedothorax apicatus (Linyphiidae) and Phylloneta impressa (Theridiidae). The spiders were topically exposed by dorsal wet application or tarsal dry exposure to commercial neonicotinoid formulations Actara 25 WG, Biscaya 240 OD, Mospilan 20 SP and Confidor 200 OD at concentrations that are recommended for application in agriculture. Contact exposure to neonicotinoids suppressed the ability of spiders to produce the major ampullate fiber and anchor it to the substratum by piriform fibrils. Contact exposure to neonicotinoids also suppressed the ballooning behavior that was manifested by climbing to elevated places, adopting a tiptoe position and producing silk gossamer in the wind. Impaired ability of affected common farmland spiders to quickly recolonize disturbed agroecosystems by silk-mediated dispersal may explain their decline in multiple farmland ecosystems, in which neonicotinoids are applied.


Asunto(s)
Ecosistema , Granjas , Insecticidas/farmacología , Neonicotinoides/farmacología , Seda/metabolismo , Arañas/metabolismo , Animales
16.
Sci Rep ; 9(1): 5724, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952926

RESUMEN

Neonicotinoids are very effective in controlling crop pests but have adverse effects on predators and pollinators. Spiders are less sensitive to neonicotinoids compared to insects because of the different structure of their acetylcholine receptors, the binding targets of neonicotinoids. We tested whether short-term exposure to neonicotinoids affected the predation rate in different densities of prey of spiders and led to their paralysis or eventual death. To examine these effects, we topically exposed dominant epigeic, epiphytic and sheet-weaving farmland spiders to four widely used neonicotinoids (imidacloprid, thiamethoxam, acetamiprid and thiacloprid). We applied the neonicotinoids at concentrations recommended by the manufacturers for spray application under field conditions. Short-term exposure to the formulations of all four tested neonicotinoids had adverse effects on the predation rate of spiders, with imidacloprid (Confidor) associated with the most severe effects on the predation rate and exhibiting partial acute lethality after one hour (15-32%). Acetamiprid also displayed strong sublethal effects, particularly when applied dorsally to Philodromus cespitum. Day-long exposure to dorsally applied acetamiprid or thiacloprid led to paralysis or death of multiple Linyphiidae spp., with the effects particularly prominent in males. To conclude, we provided multiple lines of evidence that short-term exposure to neonicotinoids, which were applied at recommended field concentrations, caused severe health effects or death in multiple families of spiders. Even acetamiprid caused strong effects, despite being subject to less strict regulations in the European Union, compared with those for imidacloprid because of claims of its negligible off-target toxicity.


Asunto(s)
Insecticidas/farmacología , Neonicotinoides/farmacología , Conducta Predatoria/efectos de los fármacos , Arañas/efectos de los fármacos , Animales , Nitrocompuestos/farmacología , Tiazinas/farmacología
17.
Ecotoxicol Environ Saf ; 167: 422-428, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30368135

RESUMEN

Physical and chemical structure affect properties of dissolved organic matter (DOM). Recent observations revealed that heating and cooling cycles at higher temperature amplitude lead to a change in DOM physical conformation assumingly followed by a slow structural relaxation. In this study, changes at lower temperature amplitudes and their relation to DOM composition were investigated using simultaneous measurements of density and ultrasonic velocity in order to evaluate the adiabatic compressibility, which is sensitive indicator of DOM structural microelasticity. Six fulvic acids (FAs) having various origins were analyzed at concentrations of 0.12, 0.6 and 1.2 g L-1 and at different temperature amplitudes. First, we validated that the used technique is sensitive to distinguish conclusively the structural changes upon heating and cooling of DOM with heating/cooling amplitude of ±â€¯3 °C and higher. This amplitude was then applied to observe the relationship between change in adiabatic compressibility and chemical composition of FA. No correlation was observed with elemental composition and aromatic structures. Positive correlations were observed with content of alkyl moieties, carboxylic and carbonyl carbons and biological activity. Based on literature data, it was concluded that alkyl moieties undergo (re)crystalization during thermal fluctuation and their structural relaxation back is very slow (if occurs). The polar moieties form a flexible hydrogel responding to thermal fluctuation by moderate dissolution and re-aggregation. Negative correlation was observed in relation to the amount of peptide and O-alkyl systems, which can be attributed to very fast structural relaxation of proteinaceous materials, i.e. their larger content leads to lower difference between original and heat-induced compressibility. Last, the increase of the heating/cooling amplitude from ±â€¯3 to ±â€¯15 °C resulted in an increase of the change of the adiabatic compressibility and in the extension of the relaxation time needed for DOM structure to return to the equilibrium. We conclude that this increase is caused by the increase in inner energy, and DOM conformation can reach a cascade of energy minima, which may influence DOM reactivity and biodegradability.


Asunto(s)
Benzopiranos/química , Conformación Molecular , Compuestos Orgánicos/química , Temperatura , Benzopiranos/análisis , Biodegradación Ambiental , Carbono , Cristalización
18.
Front Microbiol ; 9: 2862, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538687

RESUMEN

Biochar has been heralded as a multipurpose soil amendment to sustainably increase soil fertility and crop yields, affect soil hydraulic properties, reduce nutrient losses, and sequester carbon. Some of the most spectacular results of biochar (and organic nutrient) inputs are the terra preta soils in the Amazon, dark anthropogenic soils with extremely high fertility sustained over centuries. Such soil improvements have been particularly difficult to achieve on a short run, leading to speculations that biochar may need to age (weather) in soil to show its best. Further, interaction of biochar with arbuscular mycorrhizal fungi (AMF), important root symbionts of a great majority of terrestrial plants including most agricultural crops, remains little explored. To study the effect of aged biochar on highly mycotrophic Andropogon gerardii plants and their associated AMF, we made use of softwood biochar, collected from a historic charcoal burning site. This biochar (either untreated or chemically activated, the latter serving as a proxy for freshly prepared biochar) was added into two agricultural soils (acid or alkaline), and compared to soils without biochar. These treatments were further crossed with inoculation with a synthetic AMF community to address possible interactions between biochar and the AMF. Biochar application was generally detrimental for growth and mineral nutrition of our experimental plants, but had no effect on the extent of their root colonized by the AMF, nor did it affect composition of their root-borne AMF communities. In contrast, biochar affected development of two out of five AMF (Claroideoglomus and Funneliformis) in the soil. Establishment of symbiosis with AMF largely mitigated biochar-induced suppression of plant growth and mineral nutrition, mainly by improving plant acquisition of phosphorus. Both mycorrhizal and non-mycorrhizal plants grew well in the acid soil without biochar application, whereas non-mycorrhizal plants remained stunted in the alkaline soils under all situations (with or without biochar). These different and strong effects indicate that response of plants to biochar application are largely dependent on soil matrix and also on microbes such as AMF, and call for further research to enable qualified predictions of the effects of different biochar applications on field-grown crops and soil processes.

19.
Mycorrhiza ; 28(5-6): 465, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29951863

RESUMEN

Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.


Asunto(s)
Andropogon/crecimiento & desarrollo , Glomeromycota/metabolismo , Nitrógeno/metabolismo , Amoníaco/química , Andropogon/metabolismo , Andropogon/microbiología , Biomasa , Hifa/metabolismo , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Microbiología del Suelo
20.
Zootaxa ; 4370(3): 289-294, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29689850

RESUMEN

Members of the genus Gnaphosa belong to the largest gnaphosid spiders. They are particularly interesting in nature conservation as their distribution is mainly restricted to disappearing natural non-forest habitats. In Europe, several Gnaphosa species groups occur. The exclusively Palaearctic group G. bicolor is characterised by a retrolaterally-shifted embolus, which occupies at least part of the middle one-third of the palpal bulb; females have laterally expanded epigyne and often have very elongated median epigynal ducts (Ovtsharenko et al. 1992). So far four species of this group have been identified in Europe, with a fifth species found in Central Asia (G. tarabaevi Ovtsharenko, Platnick Song, 1992). Two of the European species, G. bicolor (Hahn, 1831) and G. badia (L. Koch, 1866), are well known and their taxonomy and nomenclature is stable, but the same does not hold true for the other two.


Asunto(s)
Arañas , Distribución Animal , Animales , Ecosistema , Europa (Continente) , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...