Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(39): 8432-8445, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37733881

RESUMEN

Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.

2.
J Phys Chem B ; 127(25): 5655-5667, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37327487

RESUMEN

Nitrated polycyclic molecules can present the largest singlet-triplet crossing rates among organic molecules. This implies that most of these compounds have no detectable steady-state fluorescence. In addition, some nitroaromatics undergo a complex series of photoinduced atom rearrangements that result in nitric oxide dissociation. The overall photochemistry of these systems depends critically on the competition between the rapid intersystem crossing channel and other excited-state pathways. In this contribution, we sought to characterize the degree of stabilization of the S1 state due to solute-solvent interactions, and to quantify the effect of such stabilization on their photophysical pathways. We studied 2- and 4-nitropyrene (2-NP and 4-NP), which are atypically emissive nitroaromatics in a series of solvents. From steady-state and time-resolved measurements, the S1 state of these molecules shows significant stabilization as the solvent polarity is increased. On the other hand, specific triplet states that are iso-energetic with the emissive singlet (T3 for 2-NP and T2 for 4-NP) in nonpolar solvents become slightly de-stabilized upon increasing the solvent polarity. These combined effects result in rapid singlet-triplet population transfer in nonpolar solvents for both molecules. In contrast, for solvents with even slightly higher polarities, the first excited singlet is stabilized in relation to the specific triplet states, leading to much longer S1 lifetimes. These effects can be summarized as a highly solvent-dependent coupling/decoupling of the manifolds. Similar effects are also likely to be present in other nitroaromatics where there is a dynamic competition between nitric oxide dissociation and intersystem crossing. The drastic effects of the solvent polarity in the manifold crossing pathway should be taken into consideration in both theoretical and experimental studies of nitroaromatics.

3.
Chem Sci ; 14(21): 5783-5794, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37265740

RESUMEN

Donor-acceptor Stenhouse adducts (DASAs) are important photo-responsive molecules that undergo electrocyclic reactions after light absorption. From these properties, DASAs have received extensive attention as photo-switches with negative photochromism. Meanwhile, several photochemical applications require isomerization events to take place in highly localized volumes at variable depths. Such focused photoreactions can be achieved if the electronic excitation is induced through a non-linear optical process. In this contribution we describe DASAs substituted with extended donor groups which provide them with significant two-photon absorption properties. We characterized the photo-induced transformation of these DASAs from the open polymethinic form to their cyclopentenic isomer with the use of 800 nm femtosecond pulses. These studies verified that the biphotonic excitation produces equivalent photoreactions as linear absorbance. We also determined these DASAs' two-photon absorption cross sections from measurements of their photoconverted yield after biphotonic excitation. As we show, specific donor sections provide these systems with important biphotonic cross-sections as high as 615 GM units. Such properties make these DASAs among the most non-linearly active photo-switchable molecules. Calculations at the TDDFT level with the optimally tuned range-separated functional OT-CAM-B3LYP, together with quadratic response methods indicate that the non-linear photochemical properties in these molecules involve higher lying electronic states above the first excited singlet. This result is consistent with the observed relation between their two-photon chemistry and the onset of their short wavelength absorption features around 400 nm. This is the first report of the non-linear photochemistry of DASAs. The two-photon isomerization properties of DASAs extend their applications to 3D-photocontrol, non-linear lithography, variable depth birefringence, and localized drug delivery schemes.

4.
CRISPR J ; 6(2): 116-126, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36944123

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) diagnostic methods have a large potential to effectively detect SARS-CoV-2 with sensitivity and specificity nearing 100%, comparable to quantitative polymerase chain reaction. Yet, there is room for improvement. Commonly, one guide CRISPR RNA (gRNA) is used to detect the virus DNA and activate Cas collateral activity, which cleaves a reporter probe. In this study, we demonstrated that using 2-3 gRNAs in parallel can create a synergistic effect, resulting in a 4.5 × faster cleaving rate of the probe and increased sensitivity compared to using individual gRNAs. The synergy is due to the simultaneous activation of CRISPR-Cas12a and the improved performance of each gRNA. This approach was able to detect as few as 10 viral copies of the N-gene of SARS-CoV-2 RNA after a preamplification step using reverse transcription loop-mediated isothermal amplification. The method was able to accurately detect 100% of positive and negative clinical samples in ∼25 min using a fluorescence plate reader and ∼45 min with lateral flow strips.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , ARN Viral/genética , Edición Génica , ARN Guía de Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...