Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 78
1.
Mol Biol Rep ; 51(1): 349, 2024 Feb 24.
Article En | MEDLINE | ID: mdl-38401023

BACKGROUND: Alzheimer's disease (AD) is a neurological condition that may lead to dementia as well as a slow and steady decline in cognitive ability. Finding early signs that may be used in the diagnosis of AD is still a difficult aim to achieve in the field of medical practice. METHODS AND RESULTS: The purpose of this research was to investigate to determine any differences in the gene expression patterns of crystallin mu (CRYM) and sialic acid-binding immunoglobulin-like lectin 10 (SIGLEC10) in whole blood samples obtained from fifty individuals who were diagnosed with AD and fifty individuals as a control group. When compared with controls, it was discovered that the expression of the CRYM gene was substantially decreased in AD patients, but the expression of the SIGLEC10 gene was significantly higher. A positive correlation between CRYM and SIGLEC10 was noticed solely in patients with AD. Furthermore, assessing the diagnostic value of these genes, CRYM and SIGLEC10 transcript levels displayed an area under the curve (AUC) of 0.74 and 0.81, respectively. CONCLUSIONS: These results suggest that alterations in CRYM and SIGLEC10 expression may be implicated in AD pathology and that these genes expression levels can potentially serve as biomarkers for early detection and diagnosis of AD. Nevertheless, further validation of these findings requires the inclusion of more extensive and heterogeneous cohorts. The findings derived from this study possess the capability to offer a significant contribution towards the progression of innovative diagnostic and therapeutic strategies for AD.


Alzheimer Disease , mu-Crystallins , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Biomarkers , Gene Expression , Lectins/genetics , Receptors, Cell Surface
2.
Pathol Res Pract ; 254: 155092, 2024 Feb.
Article En | MEDLINE | ID: mdl-38218042

Schimke immuno-osseous dysplasia (SIOD) is a rare multi-system condition caused by biallelic loss-of-function mutations in the SMARCAL1 gene. This disorder is characterized by disproportionate growth failure, T-cell deficiency, and renal dysfunction. Pathogenic variants in the SMARCAL1 gene have been reported in only approximately half of SIOD-affected individuals. Among these alterations, nonsense and frameshift mutations generally lead to a severe phenotype with early onset. In this study, we identified novel mutations in an Iranian patient with SIOD. A 4-year-old girl with developmental delay and facial dysmorphism was referred to our center for molecular diagnosis. We applied whole-exome and Sanger sequencing for co-segregation analysis. Subsequently, bioinformatic analysis was performed to assess the pathogenic effects of the variants and their post-transcriptional effects. We discovered two novel mutations (c.2281delT and c.2283delA) in exon 15 of the SMARCAL1 gene, resulting in a truncated protein with a loss of 193 amino acids (p.S761Rfs*1). Variant effect predictors indicated that these variants are pathogenic, and multi-sequence alignments revealed high conservation of this region among different species. Given that our patient exhibited severe a phenotype and passed away soon after receiving a definitive molecular diagnosis, we propose that the loss of the helicase C-terminal domain in the deleted part of SMARCAL1 may lead to the severe form of SIOD. Besides, the combination of growth retardation and bone abnormalities also plays a crucial role in the early diagnosis of the disease.


Arteriosclerosis , Immunologic Deficiency Syndromes , Nephrotic Syndrome , Osteochondrodysplasias , Primary Immunodeficiency Diseases , Pulmonary Embolism , Female , Humans , Child, Preschool , Iran , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/complications , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/metabolism , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/genetics , Nephrotic Syndrome/complications , DNA Helicases/genetics
3.
Mol Biol Rep ; 51(1): 49, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38165481

BACKGROUND: Alzheimer's disease (AD) is a multifaceted neurological ailment affecting more than 50 million individuals globally, distinguished by a deterioration in memory and cognitive abilities. Investigating neurotrophin growth factors could offer significant contributions to understanding AD progression and prospective therapeutic interventions. METHODS AND RESULTS: The present investigation collected blood samples from 50 patients diagnosed with AD and 50 healthy individuals serving as controls. The mRNA expression levels of neurotrophin growth factors and their receptors were measured using quantitative PCR. A Bayesian regression model was used in the research to assess the relationship between gene expression levels and demographic characteristics such as age and gender. The correlations between variables were analyzed using Spearman correlation coefficients, and the diagnostic potential was assessed using a Receiver Operating Characteristic curve. NTRK2, TrkA, TrkC, and BDNF expression levels were found to be considerably lower (p-value < 0.05) in the blood samples of AD patients compared to the control group. The expression of BDNF exhibited the most substantial decrease in comparison to other neurotrophin growth factors. Correlation analysis indicates a statistically significant positive association between the genes. The ROC analysis showed that BDNF exhibited the greatest Area Under the Curve (AUC) value of 0.76, accompanied by a sensitivity of 70% and specificity of 66%. TrkC, TrkA, and NTRK2 demonstrated considerable diagnostic potential in distinguishing between cases and controls. CONCLUSION: The observed decrease in the expression levels of NTRK2, TrkA, TrkC, and BDNF in AD patients, along with the identified associations between specific genes and their diagnostic capacity, indicate that these expressions have the potential to function as biomarkers for the diagnosis and treatment of AD.


Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Bayes Theorem , Brain-Derived Neurotrophic Factor/genetics , Receptor Protein-Tyrosine Kinases , Biomarkers
4.
Gene ; 895: 148013, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37981081

BACKGROUND: Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS: In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS: Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION: Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Polyadenylation , Alzheimer Disease/genetics , Neurodegenerative Diseases/genetics , Gene Expression , 3' Untranslated Regions/genetics
5.
Arch Rheumatol ; 38(3): 429-440, 2023 Sep.
Article En | MEDLINE | ID: mdl-38046245

Objectives: This study investigated the correlation between serum and urinary B cell-activating factor (BAFF) levels and systemic lupus erythematosus (SLE) disease activity. Patients and methods: This case-control study was conducted with 87 participants between December 2020 and September 2021. Sixty-two SLE patients who fulfilled the eligibility criteria were enrolled. SLE patients were categorized into active (n=34) and inactive (n=28) groups based on their Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) scores. The control group consisted of 25 healthy subjects. Serum and urine samples were collected for the measurement of BAFF levels. Finally, the relationship between these variables and SLE disease activity was investigated. Results: The mean age of active (SLEDAI-2K >4) and inactive (SLEDAI-2K ≤4) SLE patients and healthy individuals were 32.8±7.8, 32.5±6.8, and 31.7±7.8 years, respectively (p=0.62). The median serum BAFF (s-BAFF) and urinary BAFF (u-BAFF) in active lupus patients (10.4 [2.3] ng/mL and 8.2 [3.7] ng/mL, respectively) were significantly higher than in inactive lupus patients (6 (7.1) ng/mL and 1.7 (4.7) ng/mL, respectively; p<0.001) and the control group (3 (3.7) ng/mL and 1.6 (2.2) ng/mL, respectively; p<0.001). However, s-BAFF (p=0.07) and u-BAFF (p=0.43) did not significantly differ between the inactive group and the control group. A significant positive correlation was observed between s-BAFF (r=0.41 and p=0.001) and u-BAFF (r=0.78 and p<0.001) levels and the SLEDAI-2K score. Conclusion: There is a significant positive correlation between serum and urinary BAFF levels and SLE disease activity. Furthermore, significantly higher levels of s-BAFF and u-BAFF have been observed in patients with active lupus compared to inactive and healthy subjects, indicating a possible role for BAFF in the pathogenesis of SLE disease activity.

6.
Metab Brain Dis ; 38(8): 2563-2572, 2023 Dec.
Article En | MEDLINE | ID: mdl-37665469

Alzheimer's disease (AD) is a global health problem due to its complexity, which frequently makes the development of treatment methods extremely difficult. Therefore, new methodologies are necessary to investigate the pathophysiology of AD and to treat AD. The interaction of immune modulation and neurodegeneration has added new dimensions in current knowledge of AD etiology and offers an attractive opportunity for the discovery of novel biomarkers and therapies. Using quantitative polymerase chain reaction, we compared the expression levels of inhibitory B7 family members (B7-1, B7-2, B7-H1, B7-DC, B7-H3, B7-H4, B7-H5, B7-H7, and ILDR2), as immune regulators, in the peripheral blood of late-onset AD (LOAD) patients (n = 50) and healthy individuals (n = 50). The levels of B7-2, B7-H4, ILDR2, and B7-DC expression were significantly higher in-patient blood samples than in control blood samples. Furthermore, we discovered a substantial positive correlation between all gene expression levels. In addition, the current study indicated that ILDR2, B7-H4, B7-2, and B7-DC might serve as diagnostic biomarkers to identify LOAD patients from healthy persons. The present work provides additional evidence for the significance of inhibitory B7 family members to the etiology of LOAD.


Alzheimer Disease , V-Set Domain-Containing T-Cell Activation Inhibitor 1 , Humans , V-Set Domain-Containing T-Cell Activation Inhibitor 1/genetics , V-Set Domain-Containing T-Cell Activation Inhibitor 1/metabolism , Alzheimer Disease/genetics , Biomarkers
7.
Metab Brain Dis ; 38(6): 1963-1970, 2023 08.
Article En | MEDLINE | ID: mdl-36952089

Charcot-Marie-Tooth (CMT) comprises a group of hereditary neuropathies with clinical, epidemiological, and molecular heterogeneity in which variants in more than 80 different genes have been reported. One of the important genes which cause 5% of all CMT cases is Myelin protein zero (P0, MPZ). Variants in this gene have been reported in association with different forms of CMT including classical CMT1, severe DSS (CMT3B), DI-CMT, CMT2I and CMT2J with autosomal dominant (AD) inheritance. To our knowledge, MPZ variants have not been described in autosomal recessive (AR) form of CMT in previous studies. Moreover, its complete deletion has not been reported in human. Here, we described clinical characteristics of a patient with CMT symptoms who demonstrated manifestations of the disease late in his life. We performed exome sequencing for identifying CMT subtype and its associated gene, and follow that co-segregation analysis has been done to characterize inheritance pattern of the disorder. Through using exome sequencing, we identified a novel 4074 bp homozygote deletion which encompasses all 6 exons of the MPZ gene in this patient. After identifying the alteration, variant confirmation and co-segregation analysis have been performed by using specific primers. Our result revealed that the patient's parents were heterozygous for the alteration and they did not show any symptoms of CMT. Although most MPZ variants have been described with early onset CMT with AD pattern of inheritance, the reported patient in our study had late onset form and his parents did not show any symptoms. Considering substantial role of MPZ protein in the biogenesis of peripheral nervous system (PNS) myelin, we proposed that there should be another protein in PNS that compensates for lack of MPZ protein. Taken together, our finding is the first report of MPZ association with AR form of CMT with late onset features. Moreover, our results propose the presence of another protein in PNS myelin biogenesis and its assembly. However, functional studies alongside with other molecular studies are needed to confirm our results and identify the proposed protein.


Charcot-Marie-Tooth Disease , Myelin P0 Protein , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/diagnosis , Exons , Mutation/genetics , Myelin P0 Protein/genetics , Myelin Sheath , Proteins/genetics
8.
Front Cell Neurosci ; 17: 1044634, 2023.
Article En | MEDLINE | ID: mdl-36761351

Parkinson's disease (PD) is a distinctive clinical syndrome with several causes and clinical manifestations. Aside from an infectious cause, PD is a rapidly developing neurological disorder with a global rise in frequency. Notably, improved knowledge of molecular pathways and the developing novel diagnostic methods may result in better therapy for PD patients. In this regard, the amount of research on ceRNA axes is rising, highlighting the importance of these axes in PD. CeRNAs are transcripts that cross-regulate one another via competition for shared microRNAs (miRNAs). These transcripts may be either coding RNAs (mRNAs) or non-coding RNAs (ncRNAs). This research used a systematic review to assess validated loops of ceRNA in PD. The Prisma guideline was used to conduct this systematic review, which entailed systematically examining the articles of seven databases. Out of 309 entries, forty articles met all criteria for inclusion and were summarized in the appropriate table. CeRNA axes have been described through one of the shared vital components of the axes, including lncRNAs such as NEAT1, SNHG family, HOTAIR, MALAT1, XIST, circRNAs, and lincRNAs. Understanding the multiple aspects of this regulatory structure may aid in elucidating the unknown causal causes of PD and providing innovative molecular therapeutic targets and medical fields.

9.
Int J Pediatr Otorhinolaryngol ; 166: 111470, 2023 Mar.
Article En | MEDLINE | ID: mdl-36773447

OBJECTIVES: Sudden Sensorineural Hearing Loss (SSNHL) is an increasingly common health problem today. Although the direct mortality rate of this disorder is relatively low, its impact on quality of life is enormous; this is why accurate identification of pathogenesis and influencing factors in the disease process can play an essential role in preventing and treating the disease. Acute inflammation, which leads to chronic inflammation due to aberrant expression of inflammation-mediating genes, may play a significant role in the pathogenesis of the disease. The essential Nuclear factor kappa B (NF-kB) pathway genes, NFKB1 and NFKB2, serve as prothrombotic agents when expressed abnormally, compromising the cochlea by disrupting the endolymphatic potential and causing SSNHL. METHODS: This study investigates the expression levels of NFKB1 and NFKB2 in peripheral blood (PB) through a quantitative polymerase chain reaction in 50 Iranian patients with SSNHL, and 50 healthy volunteers were of the same age and sex as controls. RESULTS: As a result, NFKB2 expression levels in patients were higher than in controls, regardless of sex or age (posterior beta = 0.619, adjusted P-value = 0.016), and NFKB1 expression levels did not show significant differences between patients and controls. The expression levels of NFKB1 and NFKB2 had significantly strong positive correlations in both SSNHL patients and healthy individuals (r = 0.620, P = 0.001 and r = 0.657, P 0.001, respectively), suggesting the presence of an interconnected network. CONCLUSION: NFKB2 has been identified as a significant inflammatory factor in the pathophysiology of SSNHL disease. Inflammation can play an essential role in developing SSNHL, and our findings could be used as a guide for future research.


Hearing Loss, Sensorineural , Hearing Loss, Sudden , Humans , Iran , Quality of Life , Case-Control Studies , Hearing Loss, Sudden/etiology , Hearing Loss, Sensorineural/genetics , Inflammation , Gene Expression , NF-kappa B p50 Subunit/genetics , NF-kappa B p52 Subunit/genetics
10.
BMC Psychiatry ; 22(1): 771, 2022 12 08.
Article En | MEDLINE | ID: mdl-36476595

Schizophrenia (SCZ) is a severe mental disorder with an unknown pathophysiology. Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that has been associated with synapse plasticity, learning, and memory, as well as neurodevelopment and neuroprotection. The importance of neurodevelopmental and neurotoxicity-related components in the pathophysiology of SCZ has been highlighted in research on the neurobiology of this disease. The purpose of this research is to investigate the significant expression of two variables, tristetraprolin (TTP) and miR-16, which are known to be regulators of BDNF expression. Fifty Iranian Azeri SCZ patients were enrolled, and fifty healthy volunteers were age- and gender-matched as controls. A quantitative polymerase chain reaction measured the expression levels of the TTP and miR-16 in the peripheral blood (PB) of SCZ patients and healthy people. TTP expression levels in patients were higher than in controls, regardless of gender or age (posterior beta = 1.532, adjusted P-value = 0.012). TTP and miR-16 expression levels were found to be significantly correlated in both SCZ patients and healthy controls (r = 0.701, P < 0.001 and r = 0.777, P < 0.001, respectively). Due to the increased expression of TTP in SCZ and the existence of a significant correlation between TTP and miR-16, which helps to act on target mRNAs with AU-rich elements, this mechanism can be considered an influencing factor in SCZ.


MicroRNAs , Schizophrenia , Humans , Brain-Derived Neurotrophic Factor/genetics , Schizophrenia/genetics , Iran , MicroRNAs/genetics
11.
Front Psychiatry ; 13: 1010977, 2022.
Article En | MEDLINE | ID: mdl-36405929

Schizophrenia (SCZ) is a serious mental condition with an unknown cause. According to the reports, Brodmann Area 10 (BA10) is linked to the pathology and cortical dysfunction of SCZ, which demonstrates a number of replicated findings related to research on SCZ and the dysfunction in tasks requiring cognitive control in particular. Genetics' role in the pathophysiology of SCZ is still unclear. Therefore, it may be helpful to understand the effects of these changes on the onset and progression of SCZ to find novel mechanisms involved in the regulation of gene transcription. In order to determine the molecular regulatory mechanisms affecting the SCZ, the long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) axes in the BA10 area were determined using a bioinformatics approach in the present work. A microarray dataset (GSE17612) consisted of brain post-mortem tissues of the BA10 area from SCZ patients and matched healthy subjects was downloaded from the Gene Expression Omnibus (GEO) database. This dataset included probes for both lncRNAs and mRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also discovered using the DIANA-LncBase and miRTarBase databases. In the ceRNA network, positive correlations between DEmRNAs and DElncRNAs were evaluated using the Pearson correlation coefficient. Finally, lncRNA-associated ceRNA axes were built by using the co-expression and DElncRNA-miRNA-DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes, which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs (hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore, DEmRNAs were found to be enriched in the "AGE-RAGE signaling pathway in diabetic complications", "Amoebiasis", "Transcriptional misregulation in cancer", "Human T-cell leukemia virus 1 infection", and "MAPK signaling pathway". This study offers research targets for examining significant molecular pathways connected to the pathogenesis of SCZ, even though the function of these ceRNA axes still needs to be investigated.

12.
Front Genet ; 13: 1011350, 2022.
Article En | MEDLINE | ID: mdl-36324503

Slow-burning inflammation at the lesion rim is connected to the expansion of chronic multiple sclerosis (MS) lesions. However, the underlying processes causing expansion are not clearly realized. In this context, the current study used a bioinformatics approach to identify the expression profiles and related lncRNA-associated ceRNA regulatory axes in the periplaque region in MS patients. Expression data (GSE52139) from periplaque regions in the secondary progressive MS spinal cord and controls were downloaded from the Gene Expression Omnibus database (GEO), which has details on mRNAs and lncRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also found using the DIANA-LncBase, miRTarBase, and HMDD databases. The Pearson correlation coefficient was used to determine whether there were any positive correlations between DEmRNAs and DElncRNAs in the ceRNA network. Finally, lncRNA-associated ceRNA axes were created based on co-expression and connections between DElncRNA, miRNA, and DEmRNA. We used the Enrichr tool to enrich the biological process, molecular function, and pathways for DEmRNAs and DElncRNAs. A network of DEmRNAs' protein-protein interactions was developed, and the top five hub genes were found using Cytoscape and STRING. The current study indicates that 15 DEmRNAs, including FOS, GJA1, NTRK2, CTNND1, and SP3, are connected to the MS ceRNA network. Additionally, four DElncRNAs (such as TUG1, ASB16-AS1, and LINC01094) that regulated the aforementioned mRNAs by sponging 14 MS-related miRNAs (e.g., hsa-miR-145-5p, hsa-miR-200a-3p, hsa-miR-20a-5p, hsa-miR-22-3p, hsa-miR-23a-3p, hsa-miR-27a-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-34a-5p) were found. In addition, the analysis of pathway enrichment revealed that DEmRNAs were enriched in the pathways for the "MAPK signaling pathway", "Kaposi sarcoma-associated herpesvirus infection", "Human immunodeficiency virus one infection", "Lipid and atherosclerosis", and "Amphetamine addiction". Even though the function of these ceRNA axes needs to be investigated further, this study provides research targets for studying ceRNA-mediated molecular mechanisms related to periplaque demyelination in MS.

13.
Front Aging Neurosci ; 14: 933019, 2022.
Article En | MEDLINE | ID: mdl-36016853

Alzheimer's disease (AD) is a heterogeneous degenerative disorder of the brain that is on the rise worldwide. One of the critical processes that might be disturbed in AD is gene expression regulation. Tristetraprolin (TTP) and RC3H1 gene (ROQUIN) are two RNA-binding proteins (RBPs) that target AU-rich elements (AREs) and constitutive decay elements (CDEs), respectively. TTP and ROQUIN, members of the CCCH zinc-finger protein family, have been demonstrated to fine-tune numerous inflammatory factors. In addition, miR-16 has distinct characteristics and may influence the target mRNA through the ARE site. Interestingly, BDNF mRNA has ARE sites in the 3' untranslated region (UTR) and can be targeted by regulatory factors, such as TTP and miR-16 on MRE sequences, forming BDNF/miR-16/TTP regulatory axis. A number of two microarray datasets were downloaded, including information on mRNAs (GSE106241) and miRNAs (GSE157239) from individuals with AD and corresponding controls. R software was used to identify BDNF, TTP, ROQUIN, and miR-16 expression levels in temporal cortex (TC) tissue datasets. Q-PCR was also used to evaluate the expression of these regulatory factors and the expression of BDNF in the blood of 50 patients with AD and 50 controls. Bioinformatic evaluation showed that TTP and miR-16 overexpression might act as post-transcriptional regulatory factors to control BDNF expression in AD in TC samples. Instead, this expression pattern was not found in peripheral blood samples from patients with AD compared to normal controls. ROQUIN expression was increased in the peripheral blood of patients with AD. Hsa-miR-16-5p levels did not show significant differences in peripheral blood samples. Finally, it was shown that TTP and BDNF, based on evaluating the receiver operating characteristic (ROC), effectively identify patients with AD from healthy controls. This study could provide a new perspective on the molecular regulatory processes associated with AD pathogenic mechanisms linked to the BDNF growth factor, although further research is needed on the possible roles of these factors in AD.

14.
Front Oncol ; 12: 910470, 2022.
Article En | MEDLINE | ID: mdl-35865469

Retinoblastoma (RB) is one of the most common childhood cancers caused by RB gene mutations (tumor suppressor gene in various patients). A better understanding of molecular pathways and the development of new diagnostic approaches may lead to better treatment for RB patients. The number of studies on ceRNA axes is increasing, emphasizing the significance of these axes in RB. Circular RNAs (circRNAs) play a vital role in competing endogenous RNA (ceRNA) regulatory axes by sponging microRNAs and regulating gene expression. Because of the broadness of ceRNA interaction networks, they may assist in investigating treatment targets in RB. This study conducted a systematic scoping review to evaluate verified loops of ceRNA in RB, focusing on the ceRNA axis and its relationship to circRNAs. This scoping review was carried out using a six-step strategy and the Prisma guideline, and it involved systematically searching the publications of seven databases. Out of 363 records, sixteen articles were entirely consistent with the defined inclusion criteria and were summarized in the relevant table. The majority of the studies focused on the circRNAs circ_0000527, circ_0000034, and circTET1, with approximately two-fifths of the studies focusing on a single circRNA. Understanding the many features of this regulatory structure may help elucidate RB's unknown causative factors and provide novel molecular potential therapeutic targets and medical fields.

15.
Front Aging Neurosci ; 14: 812169, 2022.
Article En | MEDLINE | ID: mdl-35264942

Alzheimer's disease (AD) is a heterogeneous degenerative brain disorder with a rising prevalence worldwide. SHISA7 (CKAMP59) has emerged as one of the most intriguing new members of the SHISA family, in that, unlike other CKAMP counterparts, it exhibits a direct function in inhibitory synaptic GABAAR regulation. We used bioinformatics and experimental methods in this research to explore competing endogenous RNA (ceRNA) regulation of BCAS4 and SHISA7 in tau pathogenesis and their capacity as peripheral biomarkers linked to an abnormal inflammatory response in AD. The Gene Expression Omnibus database included two microarray datasets, including information on mRNAs (GSE106241) and miRNAs (GSE157239) from individuals with AD with different degrees of AD-associated neurofibrillary pathology in the temporal cortex (TC) tissue specimens and corresponding controls were downloaded from the Gene Expression Omnibus database. The limma package in the R software was used to identify differently expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) associated with AD-related neurofibrillary pathology. Additionally, we used the quantitative polymerase chain reaction technique to examine the expression of the BCAS4/hsa-miR-185-5p/SHISA7 ceRNA axis in the peripheral blood (PB) of fifty AD patients and fifty control subjects. BCAS4 was shown to act as a ceRNA to control the SHISA7 expression throughout AD-associated neurofibrillary pathology in TC tissue specimens by sponging hsa-miR-185-5p, based on our bioinformatics study. Furthermore, in PB specimens from individuals suffering from AD and normal controls, we found no substantial differences in BCAS4 expression patterns. SHISA7 expression in AD patients' PB was found to be reduced, as was the case in the TC. On the other hand, we discovered reduced amounts of hsa-miR-185-5p in AD patients' PB samples compared to control subjects, unlike in TC tissue, where it had been demonstrated to be overexpressed. BCAS4 and SHISA7 expression levels showed a strong positive correlation, suggesting the presence of an interconnected network, most likely as a result of ceRNA regulation among PB specimens. The present study is the first evidence to highlight the expression of the BCAS4/miR-185-5p/SHISA7 ceRNA axis in the brain and PB of AD patients, and offers a new viewpoint on molecular processes underlying AD pathogenic mechanisms.

16.
Curr Rheumatol Rev ; 18(3): 203-211, 2022.
Article En | MEDLINE | ID: mdl-35184713

OBJECTIVE: Behcet's disease (BD) is a chronic multisystem inflammatory disease classified as Variable Vessel Vasculitis with unclear etiology. We designed this systematic review and meta-analysis to evaluate vitamin D status in Behcet's disease patients with this background. METHODS: We performed this systematic review and meta-analysis according to PRISMA guidelines. We included all observational studies in humans published in English, evaluating the association of 25(OH)D concentrations in Behcet's patients. Two reviewers (HRK and AE) independently searched the databases and screened articles based on their titles and abstracts. A third reviewer resolved all disagreements. We performed analysis using Cochrane Program Review Manager Version 5.3. The protocol for this review was registered on PROSPERO (CRD42020197426). RESULTS: A total of 341 publications were initially identified according to the search strategy. Finally, 12 publications were included in the meta-analysis. We performed this meta-analysis on 1265 participants from different studies with a sample size ranging from 63 to 224 individuals. In studies comparing active and inactive subgroups of patients with Behcet's disease, we found a significantly lower serum level of vitamin D in patients with Active BD (-0.4; 95% CI: -0.61, -0.25; p<0.001). We found that the serum level of vitamin D in Behcet's disease is significantly higher than in health controls (0.5; 95% CI: 0.15, 0.50; p=0.001). CONCLUSION: We demonstrated that the existing evidence is consistent with the hypothesis that an increased serum level of vitamin D would be associated with a substantially lower risk of active Behcet's disease.


Behcet Syndrome , Vasculitis , Humans , Vitamin D
17.
Metab Brain Dis ; 37(4): 1175-1184, 2022 04.
Article En | MEDLINE | ID: mdl-35075501

Schizophrenia (SCZ) is known as a complicated mental disease with an unknown etiology. The microdeletion of 22q11.2 is the most potent genetic risk factor. Researchers are still trying to find which genes in the deletion region are linked to SCZ. MIR185, encoding microRNA (miR)-185, is present in the minimal 1.5 megabase deletion. Nonetheless, the miR-185 expression profile and its corresponding target genes in animal models and patients with 22q11.2 deletion syndrome (22q11.2DS) imply that more study is required about miR-185 and its corresponding downstream pathways within idiopathic SCZ. The expression of hsa-miR-185-5p and its corresponding target gene, shisa family member 7 (SHISA7), sometimes called CKAMP59, were evaluated in the peripheral blood (PB) samples of Iranian Azeri patients with idiopathic SCZ and healthy subjects, matched by gender and age as control groups by quantitative polymerase chain reaction (qPCR). Fifty SCZ patients (male/female: 22/28, age (mean ± standard deviation (SD)): 35.9 ± 5.6) and 50 matched healthy controls (male/female: 23/27, age (mean ± SD): 34.7 ± 5.4) were enrolled. The expression of hsa-miR-185-5p in the PB samples from subjects with idiopathic SCZ was substantially lower than in that of control groups (posterior beta = -0.985, adjusted P-value < 0.0001). There was also a difference within the expression profile between female and male subgroups (posterior beta = -0.86, adjusted P-value = 0.046 and posterior beta = -1.015, adjusted P-value = 0.004, in turn). Nevertheless, no significant difference was present in the expression level of CKAMP59 between PB samples from patients and control groups (adjusted P-value > 0.999). The analysis of the receiver operating characteristic (ROC) curve suggested that hsa-miR-185-5p may correctly distinguish subjects with idiopathic SCZ from healthy people (the area under curve (AUC) value: 0.722). Furthermore, there was a strong positive correlation between the expression pattern of the abovementioned genes in patients with SCZ and healthy subjects (r = 0.870, P < 0.001 and r = 0.812, P < 0.001, respectively), indicating that this miR works as an enhancer. More research is needed to determine if the hsa-miR-185-5p has an enhancer activity. In summary, this is the first research to highlight the expression of the miR-185 and CKAMP59 genes in the PB from subjects with idiopathic SCZ. Our findings suggest that gene expression alterations mediated by miR-185 may play a role in the pathogenesis of idiopathic and 22q11.2DS SCZ. It is worth noting that, despite a substantial and clear relationship between CKAMP59 and hsa-miR-185-5p, indicating an interactive network, their involvement in the development of SCZ should be reconsidered based on the whole blood sample since the changed expression level of CKAMP59 was not significant. Further research with greater sample sizes and particular leukocyte subsets can greatly make these results stronger.


DiGeorge Syndrome , MicroRNAs , Schizophrenia , Adult , Animals , DiGeorge Syndrome/genetics , Down-Regulation , Female , Humans , Iran , Male , MicroRNAs/metabolism , Schizophrenia/genetics
18.
J Mol Neurosci ; 72(2): 246-254, 2022 Feb.
Article En | MEDLINE | ID: mdl-34676516

Schizophrenia (SCZ) is a severe mental disorder with an unknown etiology. Recent researches indicate that correct myelination and translational regulation play a role in the pathogeny of SCZ. This study evaluated the expression pattern of Ermin (ERMN) and Listerin E3 ubiquitin protein ligase 1 (LTN1) genes, which play a role in myelination and ribosome quality control, respectively. The expression of the ERMN and LTN1 genes in the peripheral blood (PB) of 50 SCZ patients (male/female: 22/28, age (mean ± standard deviation (SD)): 35.9 ± 5.6) and 50 matched healthy controls (male/female: 23/27, age (mean ± SD): 34.7 ± 5.4) were assessed using quantitative polymerase chain reaction. Additionally, we used a bioinformatics approach based on microarray dataset analysis to examine the expression of these two genes in olfactory epithelium (OE) specimens. The expression of ERMN demonstrated no significant differences in PB samples among SCZ patients and healthy controls (adjusted P-value = 0.101). The expression of LTN1 was significantly higher in PB samples obtained from female patients compared with sex-matched controls (posterior beta = 1.734, adjusted P-value < 0.0001). Significant correlations were found between expression of the mentioned genes in PB samples both among SCZ patients and among healthy controls (r = 0.485, P < 0.001 and r = 0.516, P < 0.001, respectively). According to our in silico findings, the ERMN expression levels in OE samples of SCZ were statistically higher than those in controls (log2FC = 1.93, adj.P.Val = 9.66E-15). On the contrary, LTN1 expression levels in OE samples were statistically lower in SCZ cases versus controls (log2FC = - 0.77, adj.P.Val = 2.14E-06). Besides, a significant correlation was found between the expression of the mentioned genes in OE samples (r = - 0.60, P < 0.001). In conclusion, the present study is the first evidence to highlight the expression of the ERMN and LTN1 genes in the periphery of SCZ patients. Our findings may provide light on the SCZ's pathogeny.


Schizophrenia , Computational Biology , Female , Humans , Male , Myelin Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
Hum Antibodies ; 30(1): 1-14, 2022.
Article En | MEDLINE | ID: mdl-34864654

The outbreak of the newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) all over the world has caused global public health emergencies, international concern and economic crises. The systemic SARS-CoV-2 disease (COVID-19) can lead to death through causing unrestrained cytokines-storm and subsequent pulmonary shutdown among the elderly and patients with pre-existing comorbidities. Additionally, in comparison with poor nations without primary health care services, in developed countries with advanced healthcare system we can witness higher number of infections per one million people. In this review, we summarize the latest studies on genes associated with SARS-CoV-2 pathogenesis and propose possible mechanisms of the virus replication cycle and its triggered signaling pathways to encourage researchers to investigate genetic and immune profiles of the disease and try strategies for its treatment. Our review shows that immune response in people with different genetic background might vary as African and then Asian populations have lowest number of affected cases compared with European and American nations. Considering SARS-CoV-2 pathogenesis, we put forward some potentially important genetic gateways to COVID-19 infection including genes involved in the entry and replication of SARS-CoV-2 and the regulation of host immune response which might represent explanation for its spread, severity, and morality. Finally, we suggest that genetic alterations within these gateways could be critical factors in influencing geographical discrepancies of the virus, so it is essential to fully study them and design appropriated and reliable therapeutic agents against COVID-19.


COVID-19 , SARS-CoV-2 , Aged , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Pandemics , Severity of Illness Index
20.
Front Immunol ; 12: 770679, 2021.
Article En | MEDLINE | ID: mdl-34956196

Multiple sclerosis (MS) is an immune-mediated demyelinating and degenerative disease with unknown etiology. Inappropriate response of T-cells to myelin antigens has an essential role in the pathophysiology of MS. The clinical and pathophysiological complications of MS necessitate identification of potential molecular targets to understand the pathogenic events of MS. Since the functions and regulatory mechanisms of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in MS are yet uncertain, we conducted a bioinformatics analysis to explain the lncRNA-associated ceRNA axes to clarify molecular regulatory mechanisms involved in T-cells responses in MS. Two microarray datasets of peripheral blood T-cell from subjects with relapsing-remitting MS and matched controls containing data about miRNAs (GSE43590), mRNAs and lncRNAs (GSE43591) were downloaded from the Gene Expression Omnibus database. Differentially expressed miRNAs (DEmiRNAs), mRNAs (DEmRNAs), and lncRNAs (DElncRNAs) were identified by the limma package of the R software. Protein-protein interaction (PPI) network and module were developed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and the Molecular Complex Detection (MCODE) Cytoscape plugin, respectively. Using DIANA-LncBase and miRTarBase, the lncRNA-associated ceRNA axes was constructed. We conducted a Pearson correlation analysis and selected the positive correlations among the lncRNAs and mRNAs in the ceRNA axes. Lastly, DEmRNAs pathway enrichment was conducted by the Enrichr tool. A ceRNA regulatory relationship among Small nucleolar RNA host gene 1 (SNHG1), hsa-miR-197-3p, YOD1 deubiquitinase (YOD1) and zinc finger protein 101 (ZNF101) and downstream connected genes was identified. Pathway enrichment analysis showed that DEmRNAs were enriched in "Protein processing in endoplasmic reticulum" and "Herpes simplex virus 1 infection" pathways. To our knowledge, this would be the first report of a possible role of SNHG1/hsa-miR-197-3p/YOD1/ZNF101 axes in the pathogenesis of MS. This research remarks on the significance of ceRNAs and prepares new perceptions for discovering the molecular mechanism of MS.


MicroRNAs/genetics , Multiple Sclerosis/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , T-Lymphocytes/metabolism , Transcriptome/genetics , Computational Biology/methods , Databases, Genetic , Endopeptidases/genetics , Gene Regulatory Networks , Humans , Kruppel-Like Transcription Factors/genetics , Signal Transduction/genetics , Thiolester Hydrolases/genetics
...