Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 130(4): 1043-1051, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571057

RESUMEN

Achilles tendinopathy is a debilitating condition affecting the entire spectrum of society and a condition that increases the risk of tendon rupture. Effective therapies remain elusive, as anti-inflammatory drugs and surgical interventions show poor long-term outcomes. Eccentric loading of the Achilles muscle-tendon unit is an effective physical therapy for treatment of symptomatic human tendinopathy. Here, we introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This model includes the application of tissue (muscle and tendon)-loading "doses," coupled with ankle dorsiflexion and plantarflexion, inspired by human clinical protocols. Under computer control, the foot was rotated through the entire ankle joint range of motion while the plantar flexors simultaneously contracted to simulate body mass loading, consistent with human therapeutic exercises. This approach achieved two key components of the heel drop and raise movement: ankle range of motion coupled with body mass loading. Model development entailed the tuning of parameters such as footplate speed, number of repetitions, number of sets of repetitions, treatment frequency, treatment duration, and treatment timing. Initial model development was carried out on uninjured mice to define a protocol that was well tolerated and nondeleterious to tendon biomechanical function. When applied to a murine Achilles tendinopathy model, muscle loading led to a significant improvement in biomechanical outcome measures, with a decrease in cross-sectional area and an increase in material properties, compared with untreated animals. Our model facilitates the future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.NEW & NOTEWORTHY We introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This innovative model allows for application of muscle loading "doses," coupled with ankle dorsiflexion and plantarflexion, inspired by human loading clinical treatment. Our model facilitates future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.


Asunto(s)
Tendón Calcáneo , Tendinopatía , Animales , Tobillo , Articulación del Tobillo , Talón , Ratones
2.
J Orthop Res ; 38(1): 59-69, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31478241

RESUMEN

The deposition of aggrecan/hyaluronan (HA)-rich matrix within the tendon body and surrounding peritenon impede tendon healing and result in compromised biomechanical properties. Hence, the development of novel strategies to achieve targeted removal of the aggrecan-HA pericellular matrix may be effective in treating tendinopathy. The current study examined the therapeutic potential of a recombinant human hyaluronidase, rHuPH20 (FDA approved for reducing HA accumulation in tumors) for treating murine Achilles tendinopathy. The 12-week-old C57Bl/6 male mice were injected with two doses of rHuTGF-ß1 into the retrocalcaneal bursa (RCB) to induce a combined bursitis and tendinopathy. Twenty-four hours following induction of injury, treatment groups were administered rHuPH20 Hyaluronidase (rHuPH20; Halozyme Therapeutics) into the RCB. At either 6 h (acute), 9 days, or 25 days following hyaluronidase treatment, Achilles tendons were analyzed for gene expression, histology and immunohistochemistry, fluorophore-assisted carbohydrate electrophoresis, and biomechanical properties. The rHuPH20 treatment was effective, particularly at the acute and 9-day time points, in (a) removing HA deposits from the Achilles tendon and surrounding tissues, (b) improving biomechanical properties of the healing tendon, and (c) eliciting targeted increases in expression of specific cell fate, extracellular matrix metabolism, and inflammatory genes. The potential of rHuPH20 to effectively clear the pro-inflammatory, HA-rich matrix within the RCB and tendon strongly supports the future refinement of injectable glycosidase preparations as potential treatments to protect or regenerate tendon tissue by reducing inflammation and scarring in the presence of bursitis or other inducers of damage such as mechanical overuse. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:59-69, 2020.


Asunto(s)
Tendón Calcáneo/patología , Bursitis/tratamiento farmacológico , Hialuronoglucosaminidasa/uso terapéutico , Tendinopatía/tratamiento farmacológico , Animales , Fenómenos Biomecánicos , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Hialuronoglucosaminidasa/administración & dosificación , Inyecciones , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/uso terapéutico , Regeneración , Tendinopatía/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
3.
J Mater Chem B ; 4(43): 6989-6999, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263565

RESUMEN

Lentivectors are widely used for gene delivery and have been increasingly tested in clinical trials. However, achieving safe, localized, and sufficient gene expression remain key challenges for effective lentivectoral therapy. Localized and efficient gene expression can be promoted by developing material systems to deliver lentivectors. Here, we address the utility of microgel encapsulation as a strategy for the controlled release of lentivectors. Three distinct routes for ionotropic gelation of alginate were incorporated into microfluidic templating to create lentivector-loaded microgels. Comparisons of the three microgels revealed marked differences in mechanical properties, crosslinking environment, and ultimately lentivector release and functional gene expression in vitro. Gelation with chelated calcium demonstrated low utility for gene delivery due to a loss of lentivector function with acidic gelation conditions. Both calcium carbonate gelation, and calcium chloride gelation, preserved lentivector function with a more sustained transduction and gene expression over 4 days observed with calcium chloride gelated microgels. The validation of these two strategies for lentivector microencapsulation may provide a platform for controlled gene delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...