Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1380009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655111

RESUMEN

Introduction: Dopamine D3 receptor (D3R) ligands have been studied for the possible treatment of neurological and neuropsychiatric disorders. However, selective D3R radioligands for in vitro binding studies have been challenging to identify due to the high structural similarity between the D2R and D3R. In a prior study, we reported a new conformationally-flexible benzamide scaffold having a high affinity for D3R and excellent selectivity vs. D2R. In the current study, we characterized the in vitro binding properties of a new radioiodinated ligand, [125I]HY-3-24. Methods: In vitro binding studies were conducted in cell lines expressing D3 receptors, rat striatal homogenates, and rat and non-human primate (NHP) brain tissues to measure regional brain distribution of this radioligand. Results: HY-3-24 showed high potency at D3R (Ki = 0.67 ± 0.11 nM, IC50 = 1.5 ± 0.58 nM) compared to other D2-like dopamine receptor subtypes (D2R Ki = 86.7 ± 11.9 nM and D4R Ki > 1,000). The Kd (0.34 ± 0.22 nM) and Bmax (38.91 ± 2.39 fmol/mg) values of [125I]HY-3-24 were determined. In vitro binding studies in rat striatal homogenates using selective D2R and D3R antagonists confirmed the D3R selectivity of [125I]HY-3-24. Autoradiography results demonstrated that [125I]HY-3-24 specifically binds to D3Rs in the nucleus accumbens, islands of Calleja, and caudate putamen in rat and NHP brain sections. Conclusion: These results suggest that [125I]HY-3-24 appears to be a novel radioligand that exhibits high affinity binding at D3R, with low binding to other D2-like dopamine receptors. It is anticipated that [125I]HY-3-24 can be used as the specific D3R radioligand.

2.
Eur J Med Chem ; 261: 115751, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37688938

RESUMEN

The difference in the secondary binding site (SBS) between the dopamine 2 receptor (D2R) and dopamine 3 receptor (D3R) has been used in the design of compounds displaying selectivity for the D3R versus D2R. In the current study, a series of bitopic ligands based on Fallypride were prepared with various secondary binding fragments (SBFs) as a means of improving the selectivity of this benzamide analog for D3R versus D2R. We observed that compounds having a small alkyl group with a heteroatom led to an improvement in D3R versus D2R selectivity. Increasing the steric bulk in the SBF increase the distance between the pyrrolidine N and Asp110, thereby reducing D3R affinity. The best-in-series compound was (2S,4R)-trans-27 which had a modest selectivity for D3R versus D2R and a high potency in the ß-arrestin competition assay which provides a measure of the ability of the compound to compete with endogenous dopamine for binding to the D3R. The results of this study identified factors one should consider when designing bitopic ligands based on Fallypride displaying an improved affinity for D3R versus D2R.


Asunto(s)
Dopamina , Receptores de Dopamina D3 , Receptores de Dopamina D3/química , Benzamidas/farmacología , Ligandos
3.
Mol Imaging Biol ; 25(4): 704-719, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36991273

RESUMEN

PURPOSE: Previous studies from our lab utilized an ultra-high throughput screening method to identify compound 1 as a small molecule that binds to alpha-synuclein (α-synuclein) fibrils. The goal of the current study was to conduct a similarity search of 1 to identify structural analogs having improved in vitro binding properties for this target that could be labeled with radionuclides for both in vitro and in vivo studies for measuring α-synuclein aggregates. METHODS: Using 1 as a lead compound in a similarity search, isoxazole derivative 15 was identified to bind to α-synuclein fibrils with high affinity in competition binding assays. A photocrosslinkable version was used to confirm binding site preference. Derivative 21, the iodo-analog of 15, was synthesized, and subsequently radiolabeled isotopologs [125I]21 and [11C]21 were successfully synthesized for use in in vitro and in vivo studies, respectively. [125I]21 was used in radioligand binding studies in post-mortem Parkinson's disease (PD) and Alzheimer's disease (AD) brain homogenates. In vivo imaging of an α-synuclein mouse model and non-human primates was performed with [11C]21. RESULTS: In silico molecular docking and molecular dynamic simulation studies for a panel of compounds identified through a similarity search, were shown to correlate with Ki values obtained from in vitro binding studies. Improved affinity of isoxazole derivative 15 for α-synuclein binding site 9 was indicated by photocrosslinking studies with CLX10. Design and successful (radio)synthesis of iodo-analog 21 of isoxazole derivative 15 enabled further in vitro and in vivo evaluation. Kd values obtained in vitro with [125I]21 for α-synuclein and Aß42 fibrils were 0.48 ± 0.08 nM and 2.47 ± 1.30 nM, respectively. [125I]21 showed higher binding in human postmortem PD brain tissue compared with AD tissue, and low binding in control brain tissue. Lastly, in vivo preclinical PET imaging showed elevated retention of [11C]21 in PFF-injected mouse brain. However, in PBS-injected control mouse brain, slow washout of the tracer indicates high non-specific binding. [11C]21 showed high initial brain uptake in a healthy non-human primate, followed by fast washout that may be caused by rapid metabolic rate (21% intact [11C]21 in blood at 5 min p.i.). CONCLUSION: Through a relatively simple ligand-based similarity search, we identified a new radioligand that binds with high affinity (<10 nM) to α-synuclein fibrils and PD tissue. Although the radioligand has suboptimal selectivity for α-synuclein towards Aß and high non-specific binding, we show here that a simple in silico approach is a promising strategy to identify novel ligands for target proteins in the CNS with the potential to be radiolabeled for PET neuroimaging studies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Ratones , Animales , Humanos , alfa-Sinucleína/metabolismo , Simulación del Acoplamiento Molecular , Radioisótopos de Yodo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Neuroimagen , Ligandos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos
4.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559015

RESUMEN

The sigma-2 receptor/transmembrane protein 97 (σ2R/TMRM97) is a promising biomarker of tumor proliferation and a target for cancer therapy. [3H]DTG has been used to evaluate σ2R/TMEM97 binding affinity in compound development studies. However, [3H]DTG has equal and moderate binding affinities to both sigma 1 receptor (σ1R) and σ2R/TMEM97. Furthermore, co-administration with the σ1R masking compound (+)-pentazocine may cause bias in σ2R/TMEM97 binding affinity screening experiments. We have developed a radioiodinated ligand, [125I]RHM-4, which has high affinity and selectivity for σ2R/TMEM97 versus σ1R. In this study, a head-to-head comparison between [3H]DTG and [125I]RHM-4 on the binding affinity and their effectiveness in σ2R/TMEM97 compound screening studies was performed. The goal of these studies was to determine if this radioiodinated ligand is a suitable replacement for [3H]DTG for screening new σ2R/TMEM97 compounds. Furthermore, to delineate the binding properties of [125I]RHM-4 to the σ2R/TMEM97, the structure of RHM-4 was split into two fragments. This resulted in the identification of two binding regions in the σ2R, the "DTG" binding site, which is responsible for binding to the σ2R/TMEM97, and the secondary binding site, which is responsible for high affinity and selectivity for the σ2R/TMEM97 versus the σ1R. The results of this study indicate that [125I]RHM-4 is an improved radioligand for in vitro binding studies of the σ2R/TMEM97 versus [3H]DTG.

5.
Commun Biol ; 5(1): 1260, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396952

RESUMEN

Astatine-211-parthanatine ([211At]PTT) is an alpha-emitting radiopharmaceutical therapeutic that targets poly(adenosine-diphosphate-ribose) polymerase 1 (PARP1) in cancer cells. High-risk neuroblastomas exhibit among the highest PARP1 expression across solid tumors. In this study, we evaluated the efficacy of [211At]PTT using 11 patient-derived xenograft (PDX) mouse models of high-risk neuroblastoma, and assessed hematological and marrow toxicity in a CB57/BL6 healthy mouse model. We observed broad efficacy in PDX models treated with [211At]PTT at the maximum tolerated dose (MTD 36 MBq/kg/fraction x4) administered as a fractionated regimen. For the MTD, complete tumor response was observed in 81.8% (18 of 22) of tumors and the median event free survival was 72 days with 30% (6/20) of mice showing no measurable tumor >95 days. Reversible hematological and marrow toxicity was observed 72 hours post-treatment at the MTD, however full recovery was evident by 4 weeks post-therapy. These data support clinical development of [211At]PTT for high-risk neuroblastoma.


Asunto(s)
Neuroblastoma , Humanos , Animales , Ratones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897835

RESUMEN

A series of σ2R compounds containing benzimidazolone and diazacycloalkane cores was synthesized and evaluated in radioligand binding assays. Replacing the piperazine moiety in a lead compound with diazaspiroalkanes and the fused octahydropyrrolo[3,4-b] pyrrole ring system resulted in a loss in affinity for the σ2R. On the other hand, the bridged 2,5-diazabicyclo[2.2.1]heptane, 1,4-diazepine, and a 3-aminoazetidine analog possessed nanomolar affinities for the σ2R. Computational chemistry studies were also conducted with the recently published crystal structure of the σ2R/TMEM97 and revealed that hydrogen bond interactions with ASP29 and π-stacking interactions with TYR150 were largely responsible for the high binding affinity of small molecules to this protein.


Asunto(s)
Receptores sigma , Ligandos , Piperazina , Ensayo de Unión Radioligante , Receptores sigma/metabolismo , Relación Estructura-Actividad
7.
J Med Chem ; 65(8): 6261-6272, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35404616

RESUMEN

In this study, a panel of 46 compounds containing five different scaffolds known to have high σ2 receptor affinity were screened. 6,7-Dimethoxy-2-[4-(4-methoxyphenyl)butan-2-yl]-1,2,3,4-tetrahydroisoquinoline [(±)-7] (Ki for σ1 = 48.4 ± 7.7 nM, and Ki for σ2 = 0.59 ± 0.02 nM) and its desmethyl analogue, (±)-8 (Ki for σ1 = 108 ± 35 nM, and Ki for σ2 = 4.92 ± 0.59 nM), showed excellent binding affinity and subtype selectivity for σ2 receptors. In vitro cell binding indicated that σ2 receptor binding of [11C]-(±)-7 and [11C]-(±)-8 was dependent on TMEM97 protein expression. In PET studies, the peak brain uptake of [11C]-(±)-7 (8.28 ± 2.52%ID/cc) was higher than that of [11C]-(±)-8 (4.25 ± 0.97%ID/cc) with specific distribution in the cortex and hypothalamus. Brain uptake or tissue binding was selectively inhibited by ligands with different σ2 receptor binding affinities. The results suggest [11C]-(±)-7 can be used as a PET radiotracer for imaging the function of σ2 receptors in central nervous system disorders.


Asunto(s)
Receptores sigma , Tetrahidroisoquinolinas , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ligandos , Tomografía de Emisión de Positrones , Radiofármacos/química , Tetrahidroisoquinolinas/química
8.
Biomolecules ; 11(4)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918451

RESUMEN

[18F]Fallypride and [18F]Fluortriopride (FTP) are two different PET radiotracers that bind with sub-nanomolar affinity to the dopamine D3 receptor (D3R). In spite of their similar D3 affinities, the two PET ligands display very different properties for labeling the D3R in vivo: [18F]Fallypride is capable of binding to D3R under "baseline" conditions, whereas [18F]FTP requires the depletion of synaptic dopamine in order to image the receptor in vivo. These data suggest that [18F]Fallypride is able to compete with synaptic dopamine for binding to the D3R, whereas [18F]FTP is not. The goal of this study was to conduct a series of docking and molecular dynamic simulation studies to identify differences in the ability of each molecule to interact with the D3R that could explain these differences with respect to competition with synaptic dopamine. Competition studies measuring the ability of each ligand to compete with dopamine in the ß-arrestin assay were also conducted. The results of the in silico studies indicate that FTP has a weaker interaction with the orthosteric binding site of the D3R versus that of Fallypride. The results of the in silico studies were also consistent with the IC50 values of each compound in the dopamine ß-arrestin competition assays. The results of this study indicate that in silico methods may be able to predict the ability of a small molecule to compete with synaptic dopamine for binding to the D3R.


Asunto(s)
Ligandos , Receptores de Dopamina D3/química , Benzamidas/química , Benzamidas/metabolismo , Sitios de Unión , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/metabolismo , Receptores de Dopamina D3/metabolismo , Termodinámica
9.
Eur J Med Chem ; 209: 112906, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049607

RESUMEN

Sigma-2 receptor (σ2R/TMEM97) has been implicated to play important roles in multiple cellular dysfunctions, such as cell neoplastic proliferation, neuro-inflammation, neurodegeneration, etc. Selective σ2 ligands are believed to be promising pharmacological tools to regulate or diagnose various disorders. As an ongoing effort of discovery of new and selective σ2 ligands, we have synthesized a series of tetrahydroisoquinolino-2-alkyl phenone analogs and identified that 10 of them have moderate to potent affinity and selectivity for σ2R/TMEM97. Especially, 4 analogs showed Ki values ranging from 0.38 to 5.1 nM for σ2R/TMEM97 with no or low affinity for sigma-1 receptor (σ1R). Functional assays indicated that these 4 most potent analogs had no effects on intracellular calcium concentration and were classified as putative σ2R/TMEM97 antagonists according to current understanding. The σ2R/TMEM97 has been suggested to play important roles in the central nervous system. Based on published pharmacological and clinical results from several regarded σ2R/TMEM97 antagonists, these analogs may potentially be useful for the treatment of various neurodegenerative diseases.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/química , Receptores sigma/antagonistas & inhibidores , Tetrahidroisoquinolinas/química , Calcio/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Células MCF-7 , Fármacos Neuroprotectores/farmacología , Relación Estructura-Actividad , Tetrahidroisoquinolinas/farmacología , Receptor Sigma-1
10.
Molecules ; 25(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352773

RESUMEN

Theranostics are emerging as a pillar of cancer therapy that enable the use of single molecule constructs for diagnostic and therapeutic application. As poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP-1) is overexpressed in various cancer types, and is localized to the nucleus, PARP-1 can be safely targeted with Auger emitters to induce DNA damage in tumors. Here, we investigated a radioiodinated PARP inhibitor, [125I]KX1, and show drug target specific DNA damage and subsequent killing of BRCA1 and non-BRCA mutant ovarian cancer cells at sub-pharmacological concentrations several orders of magnitude lower than traditional PARP inhibitors. Furthermore, we demonstrated that viable tumor tissue from ovarian cancer patients can be used to screen tumor radiosensitivity ex-vivo, enabling the direct assessment of therapeutic efficacy. Finally, we showed tumors can be imaged by single-photon computed tomography (SPECT) with PARP theranostic, [123I]KX1, in a human ovarian cancer xenograft mouse model. These data support the utility of PARP-1 targeted radiopharmaceutical therapy as a theranostic option for PARP-1 overexpressing ovarian cancers.


Asunto(s)
Antineoplásicos/farmacología , Proteína BRCA1/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Radioisótopos de Yodo/farmacología , Ratones SCID
11.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33028631

RESUMEN

The σ-2 receptor (S2R) complex has been implicated in CNS disorders ranging from anxiety and depression to neurodegenerative disorders such as Alzheimer's disease (AD). The proteins comprising the S2R complex impact processes including autophagy, cholesterol synthesis, progesterone signaling, lipid membrane-bound protein trafficking, and receptor stabilization at the cell surface. While there has been much progress in understanding the role of S2R in cellular processes and its potential therapeutic value, a great deal remains unknown. The International Symposium on Sigma-2 Receptors is held in conjunction with the annual Society for Neuroscience (SfN) conference to promote collaboration and advance the field of S2R research. This review summarizes updates presented at the Fourth International Symposium on Sigma-2 Receptors: Role in Health and Disease, a Satellite Symposium held at the 2019 SfN conference. Interdisciplinary members of the S2R research community presented both previously published and preliminary results from ongoing studies of the role of S2R in cellular metabolism, the anatomic and cellular expression patterns of S2R, the relationship between S2R and amyloid ß (Aß) in AD, the role of S2R complex protein PGRMC1 in health and disease, and the efforts to design new S2R ligands for the purposes of research and drug development. The proceedings from this symposium are reported here as an update on the field of S2R research, as well as to highlight the value of the symposia that occur yearly in conjunction with the SfN conference.


Asunto(s)
Enfermedad de Alzheimer , Receptores sigma , Péptidos beta-Amiloides , Humanos , Proteínas de la Membrana , Progesterona , Receptores de Progesterona
12.
Cancers (Basel) ; 12(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668577

RESUMEN

The sigma-2 receptor was originally defined pharmacologically and recently identified as TMEM97. TMEM97 has been validated as a biomarker of proliferative status and the radioligand of TMEM97, [18F]ISO-1, has been developed and validated as a PET imaging biomarker of proliferative status of tumors and as a predictor of the cancer therapy response. [18F]ISO-1 PET imaging should be useful to guide treatment for cancer patients. TMEM97 is a membrane-bound protein and localizes in multiple subcellular organelles including endoplasmic reticulum and lysosomes. TMEM97 plays distinct roles in cancer. It is reported that TMEM97 is upregulated in some tumors but downregulated in other tumors and it is required for cell proliferation in certain tumor cells. TMEM97 plays important roles in cholesterol homeostasis. TMEM97 expression is regulated by cholesterol-regulating signals such as sterol depletion and SREBP expression levels. TMEM97 regulates cholesterol trafficking processes such as low density lipoprotein (LDL) uptake by forming complexes with PGRMC1 and low density lipoprotein receptor (LDLR), as well as cholesterol transport out of lysosome by interacting with and regulating NPC1 protein. Understanding molecular functions of TMEM97 in proliferation and cholesterol metabolism will be important to develop strategies to diagnose and treat cancer and cholesterol disorders using a rich collection of TMEM97 radiotracers and ligands.

13.
Mol Neurobiol ; 57(9): 3803-3813, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32572762

RESUMEN

Our lab has recently shown that the Sigma-2 Receptor/Transmembrane Protein 97 (TMEM97) and Progesterone Receptor Membrane Component 1 (PGRMC1) form a complex with the Low Density Lipoprotein Receptor (LDLR), and this intact complex is required for efficient uptake of lipoproteins such as LDL and apolipoprotein E (apoE). These receptors are expressed in the nervous system where they have implications in neurodegenerative diseases such as Alzheimer's disease (AD), where apoE is involved in neuronal uptake and accumulation of Aß42, eventually cascading into neurodegeneration, synaptic dysfunction, and ultimately, dementia. We hypothesize that the intact Sigma-2 receptor complex-TMEM97, PGRMC1, and LDLR-is necessary for internalization of apoE and Aß42 monomers (mAß42) and oligomers (oAß42), and the disruption of the receptor complex inhibits uptake. The results of this study suggest that the intact Sigma-2 receptor complex is a binding site for mAß42 and oAß42, in the presence or absence of apoE2, apoE3, and apoE4. The loss or pharmacological inhibition of one or both of these proteins results in the disruption of the complex leading to decreased uptake of mAß42 and oAß42 and apoE in primary neurons. The TMEM97, PGRMC1, and LDLR complex is a pathway for the cellular uptake of Aß42 via apoE dependent and independent mechanisms. This study suggests that the complex may potentially be a novel pharmacological target to decrease neuronal Aß42 internalization and accumulation, which may represent a new strategy for inhibiting the rate of neurotoxicity, neurodegeneration, and progression of AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas , Receptores de LDL/metabolismo , Receptores de Progesterona/metabolismo , Adulto , Animales , Apolipoproteínas E/metabolismo , Línea Celular , Células Cultivadas , Corteza Cerebral/patología , Humanos , Neuronas/metabolismo , Ratas
14.
J Nucl Med ; 61(6): 850-856, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31676730

RESUMEN

The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-metaiodobenzylguanidine, is ineffective at targeting micrometastases because of the low-linear-energy-transfer (LET) properties of high-energy ß-particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted near DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in preclinical models of high-risk neuroblastoma. Methods: We used a radiolabled poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor called 125I-KX1 to deliver Auger radiation to PARP-1, a chromatin-binding enzyme overexpressed in neuroblastoma. The in vitro cytotoxicity of 125I-KX1 was assessed in 19 neuroblastoma cell lines, followed by in-depth pharmacologic analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro and in vivo microdosimetry was modeled from experimentally derived pharmacologic variables. Results:125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double-strand DNA breaks. On the basis of subcellular dosimetry, 125I-KX1 was approximately twice as effective as 131I-KX1, whereas cytoplasmic 125I-metaiodobenzylguanidine demonstrated low biological effectiveness. Despite the ability to deliver a focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its α-emitting analog 211At-MM4 and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells and has the potential to be used in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1-targeted Auger emitter, calling for further investigation into targeted Auger therapy.


Asunto(s)
Electrones/uso terapéutico , Neuroblastoma/radioterapia , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Radiofármacos/uso terapéutico , Animales , Línea Celular Tumoral , Humanos , Radioisótopos de Yodo , Transferencia Lineal de Energía , Microscopía Fluorescente , Neuroblastoma/patología , Dosis de Radiación , Efectividad Biológica Relativa
15.
J Med Chem ; 62(10): 5132-5147, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31021617

RESUMEN

Previously, we reported a 3-(2-methoxyphenyl)-9-(3-((4-methyl-5-phenyl-4 H-1,2,4-triazol-3-yl)thio)propyl)-3,9-diazaspiro[5.5]undecane (1) compound with excellent dopamine D3 receptor (D3R) affinity (D3R Ki = 12.0 nM) and selectivity (D2R/D3R ratio = 905). Herein, we present derivatives of 1 with comparable D3R affinity (32, D3R Ki = 3.2 nM, D2R/D3R ratio = 60) and selectivity (30, D3R Ki = 21.0 nM, D2R/D3R ratio = 934). Fragmentation of 1 revealed orthosteric fragment 5a to express an unusually low D3R affinity ( Ki = 2.7 µM). Compared to piperazine congener 31, which retains a high-affinity orthosteric fragment (5d, D3R Ki = 23.9 nM), 1 was found to be more selective for the D3R among D1- and D2-like receptors and exhibited negligible off-target interactions at serotoninergic and adrenergic G-protein-coupled receptors (GPCRs), common off-target sites for piperazine-containing D3R scaffolds. This study provides a unique rationale for implementing weakly potent orthosteric fragments into D3R ligand systems to minimize drug promiscuity at other aminergic GPCR sites.


Asunto(s)
Receptores de Dopamina D3/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Compuestos de Espiro/farmacología , Secuencia Conservada , Diseño de Fármacos , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Ensayo de Unión Radioligante , Radiofármacos/farmacocinética , Receptores de Serotonina/efectos de los fármacos , Compuestos de Espiro/química , Relación Estructura-Actividad
16.
Cell Death Discov ; 5: 58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701090

RESUMEN

Sigma-2 receptors have been implicated in both tumor proliferation and neurodegenerative diseases. Recently the sigma-2 receptor was identified as transmembrane protein 97 (TMEM97). Progesterone receptor membrane component 1 (PGRMC1) was also recently reported to form a complex with TMEM97 and the low density lipoprotein (LDL) receptor, and this trimeric complex is responsible for the rapid internalization of LDL. Sigma-2 receptor ligands with various structures have been shown to induce cell death in cancer cells. In the current study, we examined the role of TMEM97 and PGRMC1 in mediating sigma-2 ligand-induced cell death. Cell viability and caspase-3 assays were performed in control, TMEM97 knockout (KO), PGRMC1 KO, and TMEM97/PGRMC1 double KO cell lines treated with several sigma-2 ligands. The data showed that knockout of TMEM97, PGRMC1, or both did not affect the concentrations of sigma-2 ligands that induced 50% of cell death (EC50), suggesting that cytotoxic effects of these compounds are not mediated by TMEM97 or PGRMC1. Sigma-1 receptor ligands, (+)-pentazocine and NE-100, did not block sigma-2 ligand cytotoxicity, suggesting that sigma-1 receptor was not responsible for sigma-2 ligand cytotoxicity. We also examined whether the alternative, residual binding site (RBS) of 1,3-Di-o-tolylguanidine (DTG) could be responsible for sigma-2 ligand cytotoxicity. Our data showed that the binding affinities (K i) of sigma-2 ligands on the DTG RBS did not correlate with the cytotoxicity potency (EC50) of these ligands, suggesting that the DTG RBS was not fully responsible for sigma-2 ligand cytotoxicity. In addition, we showed that knocking out TMEM97, PGRMC1, or both reduced the initial internalization rate of a sigma-2 fluorescent ligand, SW120. However, concentrations of internalized SW120 became identical later in the control and knockout cells. These data suggest that the initial internalization process of sigma-2 ligands does not appear to mediate the cell-killing effect of sigma-2 ligands. In summary, we have provided evidence that sigma-2 receptor/TMEM97 and PGRMC1 do not mediate sigma-2 ligand cytotoxicity. Our work will facilitate elucidating mechanisms of sigma-2 ligand cytotoxicity.

17.
Bioorg Chem ; 83: 242-249, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30390553

RESUMEN

Poly(ADP-ribose)polymerase-1 inhibitor (PARPi) AZD2461 was designed to be a weak P-glycoprotein (P-gp) analogue of FDA approved olaparib. With this chemical property in mind, we utilized the AZD2461 ligand architecture to develop a CNS penetrant and PARP-1 selective imaging probe, in order to investigate PARP-1 mediated neuroinflammation and neurodegenerative diseases, such as Alzheimer's and Parkinson's. Our work led to the identification of several high-affinity PARPi, including AZD2461 congener 9e (PARP-1 IC50 = 3.9 ±â€¯1.2 nM), which was further evaluated as a potential 18F-PET brain imaging probe. However, despite the similar molecular scaffolds of 9e and AZD2461, our studies revealed non-appreciable brain-uptake of [18F]9e in non-human primates, suggesting AZD2461 to be non-CNS penetrant.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Ftalazinas/farmacología , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/agonistas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Radioisótopos de Flúor/química , Humanos , Macaca mulatta , Masculino , Ratones Endogámicos BALB C , Ftalazinas/síntesis química , Piperidinas/síntesis química
18.
Sci Rep ; 8(1): 16845, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30443021

RESUMEN

CRISPR/Cas gene studies were conducted in HeLa cells where either PGRMC1, TMEM97 or both proteins were removed via gene editing. A series of radioligand binding studies, confocal microscopy studies, and internalization of radiolabeled or fluorescently tagged LDL particles were then conducted in these cells. The results indicate that PGRMC1 knockout (KO) did not reduce the density of binding sites for the sigma-2 receptor (σ2R) radioligands, [125I]RHM-4 or [3H]DTG, but a reduction in the receptor affinity of both radioligands was observed. TMEM97 KO resulted in a complete loss of binding of [125I]RHM-4 and a significant reduction in binding of [3H]DTG. TMEM97 KO and PGRMC1 KO resulted in an equal reduction in the rate of uptake of fluorescently-tagged or 3H-labeled LDL, and knocking out both proteins did not result in a further rate of reduction of LDL uptake. Confocal microscopy and Proximity Ligation Assay studies indicated a clear co-localization of LDLR, PGRMC1 and TMEM97. These data indicate that the formation of a ternary complex of LDLR-PGRMC1-TMEM97 is necessary for the rapid internalization of LDL by LDLR.


Asunto(s)
Endocitosis , Proteínas de la Membrana/metabolismo , Receptores de LDL/metabolismo , Receptores de Progesterona/metabolismo , Receptores sigma/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Células HeLa , Humanos , Insulina/metabolismo , Ligandos , Unión Proteica , Somatostatina/metabolismo
19.
Sci Rep ; 8(1): 12270, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115989

RESUMEN

Pharmacological intervention using statins and PCSK9 inhibitors have become first-line therapy in the prevention of hypercholesterolemia and atherosclerosis. Currently, no agent is available for the primary prevention of atherosclerosis. However, there is an emerging hypothesis that atherosclerosis could be driven by inflammation. In this study, we tested whether pretreatment with an aqueous extract from sesame oil (SOAE), which showed potent anti-inflammatory properties without hypocholesterolemic actions, would prevent subsequent atherosclerosis development in a mouse model. RAW 264.7 macrophages and female low-density lipoprotein receptor knockout (LDLR-/-) mice were used for in vitro and in vivo studies, respectively. Plasma lipids, cytokines and atherosclerotic lesions were quantified at the end of the study. RNA was extracted from the liver and aortic tissues and used for gene analysis. Pre-treatment of SOAE prevented Ox-LDL uptake by RAW macrophages and further inflammation in vitro. SOAE pre-treatment significantly reduced atherosclerotic lesions and pro-inflammatory gene expressions in LDLR-/- mice as compared to control mice. No significant change in plasma cholesterol levels was observed. A significant reduction in plasma levels of TNF-α, IL-6, MCP-1 and VCAM1 was observed in the SOAE pre-treated animals. This is the first study that demonstrates that pre-treatment with anti-inflammatory agents, could delay/decrease atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Receptores de LDL/deficiencia , Receptores de LDL/genética , Aceite de Sésamo/química , Agua/química , Animales , Aterosclerosis/genética , Progresión de la Enfermedad , Lipoproteínas LDL/farmacología , Ratones , Ratones Noqueados , Transcriptoma/efectos de los fármacos
20.
Biosci Rep ; 38(5)2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30135140

RESUMEN

Cholera toxin (CT) is composed of a disulfide-linked A1/A2 heterodimer and a ring-like, cell-binding B homopentamer. The catalytic A1 subunit must dissociate from CTA2/CTB5 to manifest its cellular activity. Reduction of the A1/A2 disulfide bond is required for holotoxin disassembly, but reduced CTA1 does not spontaneously separate from CTA2/CTB5: protein disulfide isomerase (PDI) is responsible for displacing CTA1 from its non-covalent assembly in the CT holotoxin. Contact with PDI shifts CTA1 from a protease-resistant conformation to a protease-sensitive conformation, which is thought to represent the PDI-mediated unfolding of CTA1. Based solely on this finding, PDI is widely viewed as an 'unfoldase' that triggers toxin disassembly by unfolding the holotoxin-associated A1 subunit. In contrast with this unfoldase model of PDI function, we report the ability of PDI to render CTA1 protease-sensitive is unrelated to its role in toxin disassembly. Multiple conditions that promoted PDI-induced protease sensitivity in CTA1 did not support PDI-mediated disassembly of the CT holotoxin. Moreover, preventing the PDI-induced shift in CTA1 protease sensitivity did not affect PDI-mediated disassembly of the CT holotoxin. Denatured PDI could still convert CTA1 into a protease-sensitive state, and equal or excess molar fractions of PDI were required for both efficient conversion of CTA1 into a protease-sensitive state and efficient disassembly of the CT holotoxin. These observations indicate the 'unfoldase' property of PDI does not play a functional role in CT disassembly and does not represent an enzymatic activity.


Asunto(s)
Toxina del Cólera/química , Chaperonas Moleculares/química , Proteína Disulfuro Isomerasas/química , Desplegamiento Proteico , Dominio Catalítico/genética , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Unión Proteica , Pliegue de Proteína , Transporte de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...