Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 310: 578-88, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26431622

RESUMEN

Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced and accumulated in the brain of children affected by severe organic acidemias (OAs) with neurodegeneration. Oxidative stress and excitotoxicity have been involved in the toxic pattern exerted by these organic acids. Studying the early pattern of toxicity exerted by these metabolites is crucial to explain the extent of damage that they can produce in the brain. Herein, we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) on early markers of GA-, 3-OHGA-, MMA- and PA-induced toxicity in brain synaptosomes from adult (90-day-old) and adolescent (30-day-old) rats. As pre-treatment, WIN exerted protective effects on the GA- and MMA-induced mitochondrial dysfunction, and prevented the reactive oxygen species (ROS) formation and lipid peroxidation induced by all metabolites. Our findings support a protective and modulatory role of cannabinoids in the early toxic events elicited by toxic metabolites involved in OAs.


Asunto(s)
Ácidos Acíclicos/metabolismo , Ácidos Acíclicos/toxicidad , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Benzoxazinas/farmacología , Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Agonistas de Receptores de Cannabinoides/farmacología , Glutaril-CoA Deshidrogenasa/deficiencia , Morfolinas/farmacología , Naftalenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/toxicidad , Glutaril-CoA Deshidrogenasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ácido Metilmalónico/metabolismo , Ácido Metilmalónico/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Propionatos/metabolismo , Propionatos/toxicidad , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
2.
Neuroscience ; 308: 64-74, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26343296

RESUMEN

The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and nitrosative stress. Therefore, QUIN can be hypothesized to contribute to the pathophysiology of brain degeneration in children with metabolic acidemias.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas/metabolismo , Encéfalo/metabolismo , Glutaratos/metabolismo , Glutaril-CoA Deshidrogenasa/deficiencia , Ácido Quinolínico/metabolismo , Sinaptosomas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Glutaratos/toxicidad , Glutaril-CoA Deshidrogenasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ácido Metilmalónico/metabolismo , Ácido Metilmalónico/toxicidad , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Propionatos/metabolismo , Propionatos/toxicidad , Ácido Quinolínico/toxicidad , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sinaptosomas/efectos de los fármacos
3.
Neuroscience ; 304: 122-32, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26188285

RESUMEN

Phytanic acid (Phyt) accumulates in various peroxisomal diseases including Refsum disease (RD) and Zellweger syndrome (ZS). Since the pathogenesis of the neurological symptoms and especially the cerebellar abnormalities in these disorders are poorly known, we investigated the effects of in vivo intracerebral administration of Phyt on a large spectrum of redox homeostasis parameters in the cerebellum of young rats. Malondialdehyde (MDA) levels, sulfhydryl oxidation, carbonyl content, nitrite and nitrate concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, total (tGS) and reduced glutathione (GSH) levels and the activities of important antioxidant enzymes were determined at different periods after Phyt administration. Immunohistochemical analysis was also carried out in the cerebellum. Phyt significantly increased MDA and nitric oxide (NO) production and decreased GSH levels, without altering tGS, DCFH oxidation, sulfhydryl oxidation, carbonyl content and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD). Furthermore, immunohistochemical analysis revealed that Phyt caused astrogliosis and protein nitrosative damage in the cerebellum. It was also observed that the NO synthase inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME) prevented the increase of MDA and NO production as well as the decrease of GSH and the immunohistochemical alterations caused by Phyt, strongly suggesting that reactive nitrogen species (RNS) were involved in these effects. The present data provide in vivo solid evidence that Phyt disrupts redox homeostasis and causes astrogliosis in rat cerebellum probably mediated by RNS production. It is therefore presumed that disequilibrium of redox status may contribute at least in part to the cerebellum alterations characteristic of patients affected by RD and other disorders with Phyt accumulation.


Asunto(s)
Astrocitos/metabolismo , Cerebelo/metabolismo , Estrés Oxidativo/fisiología , Trastorno Peroxisomal/fisiopatología , Ácido Fitánico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Animales , Astrocitos/patología , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Modelos Animales de Enfermedad , Gliosis/patología , Gliosis/fisiopatología , Homeostasis/fisiología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Fármacos Neuroprotectores/farmacología , Trastorno Peroxisomal/patología , Ácido Fitánico/administración & dosificación , Ratas Wistar , Factores de Tiempo
4.
J Inherit Metab Dis ; 28(4): 501-15, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15902553

RESUMEN

Mitochondrial beta-ketothiolase and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiencies are inherited neurometabolic disorders affecting isoleucine catabolism. Biochemically, beta-ketothiolase deficiency is characterized by intermittent ketoacidosis and urinary excretion of 2-methyl-acetoacetate (MAA), 2-methyl-3-hydroxybutyrate (MHB) and tiglylglycine (TG), whereas in MHBD deficiency only MHB and tiglylglycine accumulate. Lactic acid accumulation and excretion are also observed in these patients, being more pronounced in MHBD-deficient individuals, particularly during acute episodes of decompensation. Patients affected by MHBD deficiency usually manifest severe mental retardation and convulsions, whereas beta-ketothiolase-deficient patients present encephalopathic crises characterized by metabolic acidosis, vomiting and coma. Considering that the pathophysiological mechanisms responsible for the neurological alterations of these disorders are unknown and that lactic acidosis suggests an impairment of energy production, the objective of the present work was to investigate the in vitro effect of MAA and MHB, at concentrations varying from 0.01 to 1.0 mmol/L, on several parameters of energy metabolism in cerebral cortex from young rats. We observed that MAA markedly inhibited CO2 production from glucose, acetate and citrate at concentrations as low as 0.01 mmol/L. In addition, the activities of the respiratory chain complex II and succinate dehydrogenase were mildly inhibited by MAA. MHB, at 0.01 mmol/L and higher concentrations, strongly inhibited CO2 production from all tested substrates, as well as the respiratory chain complex IV activity. The other activities of the respiratory chain were not affected by these metabolites. The data indicate a marked blockage in the Krebs cycle and a mild inhibition of the respiratory chain caused by MAA and MHB. Furthermore, MHB inhibited total and mitochondrial creatine kinase activities, which was prevented by the use of the nitric-oxide synthase inhibitor L-NAME and glutathione (GSH). These data indicate that the effect of MHB on creatine kinase was probably mediated by oxidation or other modification of essential thiol groups of the enzyme by nitric oxide and other by-products derived from this organic acid. In contrast, MAA did not affect creatine kinase activity. Taken together, these observations indicate that aerobic energy metabolism is inhibited by MAA and to a greater extent by MHB, a fact that may be related to lactic acidaemia occurring in patients affected by MHBD and beta-ketothiolase deficiencies. If the in vitro effects detected in the present study also occur in vivo, it is tempting to speculate that they may contribute, at least in part, to the neurological dysfunction found in these disorders.


Asunto(s)
Acetoacetatos/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Metabolismo Energético , Hidroxibutiratos/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas , Acetatos/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Acidosis/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Encéfalo/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Corteza Cerebral/metabolismo , Citratos/metabolismo , Creatina Quinasa/metabolismo , Relación Dosis-Respuesta a Droga , Transporte de Electrón , Glucosa/metabolismo , Glutatión/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Técnicas In Vitro , Discapacidad Intelectual , Ácido Láctico/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Oxígeno/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
5.
Neurochem Int ; 44(5): 345-53, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14643752

RESUMEN

A predominantly neurological presentation is common in patients with glutaric acidemia type I (GA-I). 3-hydroxyglutaric acid (3-OHGA), which accumulates in affected patients, has recently been demonstrated to play a central role in the neuropathogenesis of this disease. In the present study, we investigated the in vitro effects of 3-OHGA at concentrations ranging from 10 to 1000 microM on various parameters of the glutamatergic system, such as the basal and potassium-induced release of [3H]glutamate by synaptosomes, as well as on Na+-dependent [3H]glutamate uptake by synaptosomes and astrocytes and Na+-independent [3H]glutamate uptake by synaptic vesicles from cerebral cortex of 30-day-old Wistar rats. First, we observed that exposure of cultured astrocytes to 3-OHGA for 20 h did not reduce their viability. Furthermore, 3-OHGA significantly increased Na+-dependent [3H]glutamate uptake by astrocytes by up to 80% in a dose-dependent manner at doses as low as 30 microM. This effect was not dependent on the presence of the metabolite during the uptake assay, since it occurred even when 3-OHGA was withdrawn from the medium after cultured cells had been exposed to the acid for approximately 1 h. All other parameters investigated were not influenced by this organic acid, indicating a selective action of 3-OHGA on astrocyte transporters. Although the exact mechanisms involved in 3-OHGA-stimulatory effect on astrocyte glutamate uptake are unknown, the present findings contribute to the understanding of the pathophysiology of GA-I, suggesting that astrocytes may protect neurons against excitotoxic damage caused by 3-OHGA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Glutaratos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Ratas , Ratas Wistar , Estimulación Química , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
6.
Eur J Clin Invest ; 33(10): 840-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14511354

RESUMEN

BACKGROUND: Tissue accumulation of high amounts of D-2-hydroxyglutaric acid (DGA) is the biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (DHGA). Patients affected by this disease usually present hypotonia, muscular weakness, hypertrophy and cardiomyopathy, besides severe neurological findings. However, the underlying mechanisms of muscle injury in this disorder are virtually unknown. MATERIALS AND METHODS: In the present study we have evaluated the in vitro role of DGA, at concentrations ranging from 0.25 to 5.0 mM, on total, cytosolic and mitochondrial creatine kinase activities from skeletal and cardiac muscle of 30-day-old Wistar rats. We also tested the effects of various antioxidants on the effects elicited by DGA. RESULTS: We first verified that total creatine kinase (CK) activity from homogenates was significantly inhibited by DGA (22-24% inhibition) in skeletal and cardiac muscle, and that this activity was approximately threefold higher in skeletal muscle than in cardiac muscle. We also observed that CK activities from mitochondrial (Mi-CK) and cytosolic (Cy-CK) preparations from skeletal muscle and cardiac muscle were also inhibited (12-35% inhibition) by DGA at concentrations as low as 0.25 mm, with the effect being more pronounced in cardiac muscle preparations. Finally, we verified that the DGA-inhibitory effect was fully prevented by preincubation of the homogenates with reduced glutathione and cysteine, suggesting that this effect is possibly mediated by modification of essential thiol groups of the enzyme. Furthermore, alpha-tocopherol, melatonin and the inhibitor of nitric oxide synthase L-NAME were unable to prevent this effect, indicating that the most common reactive oxygen and nitrogen species were not involved in the inhibition of CK provoked by DGA. CONCLUSION: Considering the importance of creatine kinase activity for cellular energy homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA might be an important mechanism involved in the myopathy and cardiomyopathy of patients affected by DHGA.


Asunto(s)
Creatina Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Glutaratos/farmacología , Corazón/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Animales , Antioxidantes/farmacología , Creatina Quinasa/metabolismo , Forma Mitocondrial de la Creatina-Quinasa , Citosol/enzimología , Relación Dosis-Respuesta a Droga , Glutaratos/antagonistas & inhibidores , Técnicas In Vitro , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Músculo Esquelético/enzimología , Miocardio/enzimología , Ratas , Ratas Wistar
7.
Neurochem Int ; 40(7): 593-601, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11900854

RESUMEN

Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32-46%), complex I (61-72%), and complex II+III (15-26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1mM succinate in the assay instead of the usual 16mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11-27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Ácido Metilmalónico/farmacología , Mitocondrias/efectos de los fármacos , Animales , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Metabolismo Energético , Mitocondrias/enzimología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA