Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Bioorg Med Chem ; 28(15): 115600, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631571

RESUMEN

The enzyme dihydrofolate reductase from M.tuberculosis (MtDHFR) has a high unexploited potential to be a target for new drugs against tuberculosis (TB), due to its importance for pathogen survival. Preliminary studies have obtained fragment-like molecules with low affinity to MtDHFR which can potentially become lead compounds. Taking this into account, the fragment MB872 was used as a prototype for analogue development by bioisosterism/retro-bioisosterism, which resulted in 20 new substituted 3-benzoic acid derivatives. Compounds were active against MtDHFR, with IC50 values ranging from 7 to 40 µM, where compound 4e not only had the best inhibitory activity (IC50 = 7 µM), but also was 71-fold more active than the original fragment MB872. The 4e inhibition kinetics indicated an uncompetitive mechanism, which was supported by molecular modeling which suggested that the compounds can access an independent backpocket from the substrate and competitive inhibitors. Thus, based on these results, substituted 3-benzoic acid derivatives have strong potential to be developed as novel MtDHFR inhibitors and also anti-TB agents.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Benzoatos/farmacología , Antagonistas del Ácido Fólico/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/metabolismo , Antituberculosos/síntesis química , Antituberculosos/metabolismo , Proteínas Bacterianas/química , Benzoatos/síntesis química , Benzoatos/metabolismo , Dominio Catalítico , Diseño de Fármacos , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/metabolismo , Cinética , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/química
2.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 682-693, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31282477

RESUMEN

Tuberculosis is a disease caused by Mycobacterium tuberculosis and is the leading cause of death from a single infectious pathogen, with a high prevalence in developing countries in Africa and Asia. There still is a need for the development or repurposing of novel therapies to combat this disease owing to the long-term nature of current therapies and because of the number of reported resistant strains. Here, structures of dihydrofolate reductase from M. tuberculosis (MtDHFR), which is a key target of the folate pathway, are reported in complex with four antifolates, pyrimethamine, cycloguanil, diaverdine and pemetrexed, and its substrate dihydrofolate in order to understand their binding modes. The structures of all of these complexes were obtained in the closed-conformation state of the enzyme and a fine structural analysis indicated motion in key regions of the substrate-binding site and different binding modes of the ligands. In addition, the affinities, through Kd measurement, of diaverdine and methotrexate have been determined; MtDHFR has a lower affinity (highest Kd) for diaverdine than pyrimethamine and trimethoprim, and a very high affinity for methotrexate, as expected. The structural comparisons and analysis described in this work provide new information about the plasticity of MtDHFR and the binding effects of different antifolates.


Asunto(s)
Antagonistas del Ácido Fólico/química , Ácido Fólico/análogos & derivados , Mycobacterium tuberculosis/enzimología , Tetrahidrofolato Deshidrogenasa/química , Sitios de Unión , Cristalización/métodos , Cristalografía por Rayos X/métodos , Escherichia coli/genética , Ácido Fólico/química , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Tuberculosis/microbiología
3.
Int J Biol Macromol ; 129: 653-658, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30771398

RESUMEN

Epoxide hydrolases (EHs) are enzymes involved in the metabolism of endogenous and exogenous epoxides, and the development of EH inhibitors has important applications in the medicine. In humans, EH inhibitors are being tested in the treatment of cardiovascular diseases and show potent anti-inflammatory effects. EH inhibitors are also considerate promising molecules against infectious diseases. EHs are functionally very well studied, but only a few members have its three-dimensional structures characterized. Recently, a new EH from the filamentous fungi Trichoderma reseei (TrEH) was reported, and a series of urea or amide-based inhibitors were identified. In this study, we describe the crystallographic structures of TrEH in complex with five different urea or amide-based inhibitors with resolutions ranging from 2.6 to 1.7 Å. The analysis of these structures reveals the molecular basis of the inhibition of these compounds. We could also observe that these inhibitors occupy the whole extension of the active site groove and only a few conformational changes are involved. Understanding the structural basis EH interactions with different inhibitors might substantially contribute for the study of fungal metabolism and in the development of novel and more efficient antifungal drugs against pathogenic Trichoderma species.


Asunto(s)
Amidas/química , Amidas/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Trichoderma/enzimología , Urea/química , Urea/farmacología , Amidas/metabolismo , Dominio Catalítico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Concentración 50 Inhibidora , Modelos Moleculares , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...