Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 169: 72-81, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29751343

RESUMEN

The use of central venous catheters (CVC) is highly associated with nosocomial blood infections and its use largely requires a systematic assessment of benefits and risks. Bacterial contamination of these tubes is frequent and may result in development of microbial consortia also known as biofilm. The woven nature of biofilm provides a practical defense against antimicrobial agents, facilitating bacterial dissemination through the patient's body and development of antimicrobial resistance. In this work, the authors describe the modification of CVC tubing by immobilizing Fe3O4-aminosilane core-shell nanoparticles functionalized with antimicrobial peptide clavanin A (clavA) as an antimicrobial prophylactic towards Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Its anti-biofilm-attachment characteristic relies in clavA natural activity to disrupt the bacterial lipidic membrane. The aminosilane shell prevents iron leaching, which is an important nutrient for bacterial growth. Fe3O4-clavA-modified CVCs showed to decrease Gram-negative bacteria attachment up to 90% when compared to control clean CVC. Additionally, when hyperthermal treatment is triggered for 5 min at 80 °C in a tubing that already presents bacterial biofilm (CVC-BF), the viability of attached bacteria reduces up to 88%, providing an efficient solution to avoid changing catheter.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Proteínas Sanguíneas/farmacología , Óxido Ferrosoférrico/farmacología , Nanopartículas/química , Silanos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Sanguíneas/química , Escherichia coli/efectos de los fármacos , Óxido Ferrosoférrico/química , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Pseudomonas aeruginosa/efectos de los fármacos , Silanos/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
2.
Front Biosci (Schol Ed) ; 8(1): 129-42, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26709903

RESUMEN

The hospital infections associated with surgical procedures and implants still represents a severe problem to modern society. Therefore, new strategies to combat bacterial infections mainly caused by microorganisms resistant to conventional antibiotics are extremely necessary. In this context, antimicrobial peptides have gained prominence due their biocompatibility, low toxicity and effectiveness. The immobilization of antimicrobial peptides (AMPs) onto a biomaterial surface is an excellent alternative to the development of new biodevices with microbicide properties. Herein, we describe reports related to physical-chemical characterization, in vitro/in vivo studies and clinical applicability. In this review, we focused on the AMPs mechanisms of action, different peptide immobilization strategies on solid surface and their microbicide effectiveness.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Materiales Biocompatibles , Péptidos/química
3.
Front Microbiol ; 5: 443, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191319

RESUMEN

Antimicrobial peptides (AMPs) are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants, and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi, and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA