Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 10(40): 8282-8294, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36155711

RESUMEN

Polymeric nanocarriers (NCs) are efficient vehicles to prevent drug unspecific biodistribution and increase the drug amounts delivered to tumor tissues. However, some toxicological aspects of NCs still lack a comprehensive assessment, such as their effects on cellular processes that lead to toxicity. We evaluate the interaction of poly(lactic-co-glycolic acid) (PLGA) NCs prepared using dextran (Dex) and Pluronic®-F127 as stabilizing agents with myocardial cells (H9C2), breast adenocarcinoma cells (MCF-7) and macrophages (RAW 264.7) to address the effect of Dex in PLGA NC formulations. By an emulsion diffusion method, doxorubicin-loaded NCs were prepared with no Dex (PLGA-DOX), 1% (w/v) Dex (Dex1/PLGA-DOX) and 5% (w/v) Dex (Dex5/PLGA-DOX). Uptake analyses revealed a significant reduction in Dex5/PLGA-DOX NC uptake by H9C2 and MCF-7, as in the case of Dex1/PLGA-DOX NCs in the absence of in vitro protein corona, revealing an effect of dextran concentration on the formation of protein corona. RAW 264.7 cells presented a greater uptake of Dex5/PLGA-DOX NCs than the other NCs likely because of receptor mediated endocytosis, since C-type lectins like SIGN-R1, mannose receptors and scavenger receptor type 1 that are expressed in RAW 264.7 can mediate Dex uptake. Despite the lower uptake, Dex5/PLGA-DOX NCs promote the generation of reactive oxygen species and oxidative membrane damage in MCF-7 and H9C2 even though cellular metabolic activity assessed by MTT was comparable among all the NCs. Our results highlight the importance of an in-depth investigation of the NC-cell interaction considering additional mechanisms of damage apart from metabolic variations, as nanoparticle-induced damage is not limited to imbalance in metabolic processes, but also associated with other mechanisms, e.g., membrane and DNA damage.


Asunto(s)
Antineoplásicos , Corona de Proteínas , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/metabolismo , Dextranos , Portadores de Fármacos/metabolismo , Antineoplásicos/farmacología , Distribución Tisular , Poloxámero/metabolismo , Emulsiones/metabolismo , Excipientes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Membrana Celular/metabolismo , Lectinas Tipo C/metabolismo
2.
Eur J Pharm Biopharm ; 176: 168-179, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643369

RESUMEN

Extracellular vesicles (EVs) and cell membrane nanoghosts are excellent coatings for nanomaterials, providing enhanced delivery in the target sites and evasion of the immune system. These cell-derived coatings allow the exploration of the delivery properties of the nanoparticles without stimulation of the immune system. Despite the advances reported on the use of EVs and cell-membrane coatings for nanomedicine applications, there are no standards to compare the benefits and main differences between these technologies. Here we investigated macrophage-derived EVs and cell membranes-coated gold nanorods and compared both systems in terms of target delivery in cancer and stromal cells. Our results reveal a higher tendency of EV-coated nanorods to interact with macrophages yet both EV and cell membrane-coated nanorods were internalized in the metastatic breast cancer cells. The main differences between these nanoparticles are related to the presence or absence of CD47 in the coating material, not usually addressed in EVs characterization. Our findings highlight important delivery differences exhibited by EVs- or cell membranes- coated nanorods which understanding may be important to the design and development of theragnostic nanomaterials using these coatings for target delivery.


Asunto(s)
Vesículas Extracelulares , Nanotubos , Membrana Celular , Vesículas Extracelulares/metabolismo , Oro/metabolismo , Medicina de Precisión
3.
Pharmaceutics ; 13(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34959326

RESUMEN

Safe and reliable entry to the brain is essential for successful diagnosis and treatment of diseases, but it still poses major challenges. As a result, many therapeutic approaches to treating disorders associated with the central nervous system (CNS) still only show limited success. Nano-sized systems are being explored as drug carriers and show great improvements in the delivery of many therapeutics. The systemic delivery of nanoparticles (NPs) or nanocarriers (NCs) to the brain involves reaching the neurovascular unit (NVU), being transported across the blood-brain barrier, (BBB) and accumulating in the brain. Each of these steps can benefit from specifically controlled properties of NPs. Here, we discuss how brain delivery by NPs can benefit from careful design of the NP properties. Properties such as size, charge, shape, and ligand functionalization are commonly addressed in the literature; however, properties such as ligand density, linker length, avidity, protein corona, and stiffness are insufficiently discussed. This is unfortunate since they present great value against multiple barriers encountered by the NPs before reaching the brain, particularly the BBB. We further highlight important examples utilizing targeting ligands and how functionalization parameters, e.g., ligand density and ligand properties, can affect the success of the nano-based delivery system.

4.
Biomater Sci ; 9(21): 7092-7103, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33538729

RESUMEN

Glioblastoma (GBM) is a devastating primary brain tumor resistant to conventional therapies. A major obstacle to GBM treatment is the blood-brain barrier (BBB), or blood-glioma barrier, which prevents the transport of systemically administered (chemotherapeutic) drugs into the tumor. This study reports the design of dodecamer peptide (G23)-functionalized polydopamine (pD)-coated curcumin-loaded zein nanoparticles (CUR-ZpD-G23 NPs) that efficiently traversed the BBB, and delivered curcumin to glioblastoma cells. The NPs enhanced the cellular uptake of curcumin by C6 glioma cells compared to free curcumin, and showed high penetration into 3D tumor spheroids. Functionalization of the NPs with G23 stimulated BBB crossing and tumor spheroid penetration. Moreover, the NPs markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of C6 glioma cell growth. Fluorescence microscopy and flow cytometry studies showed that the CUR-ZpD-G23 NPs increased cellular ROS production and induced apoptosis of C6 glioma cells. Following in vivo intravenous injection in zebrafish, ZpD-G23 NPs demonstrated the ability to circulate, which is a first prerequisite for their use in targeted drug delivery. In conclusion, zein-polydopamine-G23 NPs show potential as a drug delivery platform for therapy of GBM, which requires further validation in in vivo glioblastoma models.


Asunto(s)
Curcumina , Glioblastoma , Nanopartículas , Zeína , Animales , Barrera Hematoencefálica , Línea Celular Tumoral , Proliferación Celular , Curcumina/farmacología , Curcumina/uso terapéutico , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Pez Cebra
5.
Nanomedicine ; 34: 102377, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33621652

RESUMEN

Transport of therapeutics across the blood-brain barrier (BBB) is a fundamental requirement for effective treatment of numerous brain diseases. However, most therapeutics (>500 Da) are unable to permeate through the BBB and do not achieve therapeutic doses. Nanoparticles (NPs) are being investigated to facilitate drug delivery to the brain. Here, we investigate the effect of nanoparticle stiffness on NP transport across an in vitro BBB model. To this end, fluorescently labeled poly(N-isopropylmethacrylamide) (p(NIPMAM)) nanogels' stiffness was varied by the inclusion of 1.5 mol% (NG1.5), 5 mol% (NG5), and 14 mol% (NG14) N,N'-methylenebis(acrylamide) (BIS) cross-linker and nanogel uptake and transcytosis was quantified. The more densely cross-linked p(NIPMAM) nanogels showed the highest level of uptake by polarized brain endothelial cells, whereas the less densely cross-linked nanogels demonstrated the highest transcytotic potential. These findings suggest that nanogel stiffness has opposing effects on nanogel uptake and transcytosis at the BBB.


Asunto(s)
Barrera Hematoencefálica , Nanogeles/química , Acrilamidas/química , Línea Celular , Endotelio Vascular/citología , Colorantes Fluorescentes/química , Humanos , Técnicas In Vitro , Polímeros/química
6.
Front Aging Neurosci ; 12: 587989, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281599

RESUMEN

Evidence suggests that extracellular vesicles (EVs) act as mediators and biomarkers of neurodegenerative diseases. Two distinct forms of Alzheimer disease (AD) are known: a late-onset sporadic form (SAD) and an early-onset familial form (FAD). Recently, neurovascular dysfunction and altered systemic immunological components have been linked to AD neurodegeneration. Therefore, we characterized systemic-EVs from postmortem SAD and FAD patients and evaluated their effects on neuroglial and endothelial cells. We found increase CLN-5 spots with vesicular morphology in the abluminal portion of vessels from SAD patients. Both forms of AD were associated with larger and more numerous systemic EVs. Specifically, SAD patients showed an increase in endothelial- and leukocyte-derived EVs containing mitochondria; in contrast, FAD patients showed an increase in platelet-derived EVs. We detected a differential protein composition for SAD- and FAD-EVs associated with the coagulation cascade, inflammation, and lipid-carbohydrate metabolism. Using mono- and cocultures (endothelium-astrocytes-neurons) and human cortical organoids, we showed that AD-EVs induced cytotoxicity. Both forms of AD featured decreased neuronal branches area and astrocytic hyperreactivity, but SAD-EVs led to greater endothelial detrimental effects than FAD-EVs. In addition, FAD- and SAD-EVs affected calcium dynamics in a cortical organoid model. Our findings indicate that the phenotype of systemic AD-EVs is differentially defined by the etiopathology of the disease (SAD or FAD), which results in a differential alteration of the NVU cells implied in neurodegeneration.

7.
Anal Chim Acta ; 1139: 198-221, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190704

RESUMEN

The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.


Asunto(s)
Técnicas Biosensibles , Monofenol Monooxigenasa , Nanoestructuras , Carbono , Técnicas Electroquímicas , Lacasa
8.
Chemistry ; 26(66): 15084-15088, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32608127

RESUMEN

A multimodal approach for hydrogel-based nanoparticles was developed to selectively allow molecular conjugated species to either be released inside the cell or remain connected to the polymer network. Using the intrinsic difference in reactivity between esters and amides, nanogels with an amide-conjugated dye could be tracked intracellularly localizing next to the nucleus, while ester-conjugation allowed for liberation of the molecular species from the hydrogel network inside the cell, enabling delivery throughout the cytoplasm. The release was a result of particle exposure to the intracellular environment. The conjugation approach and polymer network building rely on the same chemistry and provide a diverse range of possibilities to be used in nanomedicine and theranostic approaches.


Asunto(s)
Nanogeles , Nanopartículas , Citoplasma/química , Sistemas de Liberación de Medicamentos , Nanomedicina , Polímeros/química
9.
Chem Commun (Camb) ; 56(62): 8774-8777, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32618300

RESUMEN

Controllable molecular release from delivery vehicles is essential to successfully reduce drug toxicity and improve therapeutic efficacy. Light-powered hydrophobic molecular motors were therefore incorporated in liposomes to use molecular rotation to facilitate on-demand release. The extent of the release was precisely controlled by irradiation times, providing a simple yet sophisticated responsive molecular nanocarrier.


Asunto(s)
Liberación de Fármacos , Luz , Liposomas/química , Rotación , Modelos Moleculares , Conformación Molecular
10.
Biosens Bioelectron ; 89(Pt 1): 224-233, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27005454

RESUMEN

Advances in analysis are required for rapid and reliable clinical diagnosis. Graphene is a 2D material that has been extensively used in the development of devices for the medical proposes due to properties such as an elevated surface area and excellent electrical conductivity. On the other hand, architectures have been designed with the incorporation of different biological recognition elements such as antibodies/antigens and DNA probes for the proposition of immunosensors and genosensors. This field presents a great progress in the last few years, which have opened up a wide range of applications. Here, we highlight a rather comprehensive overview of the interesting properties of graphene for in vitro, in vivo, and point-of-care electrochemical biosensing. In the course of the paper, we first introduce graphene, electroanalytical methods (potentiometry, voltammetry, amperometry and electrochemical impedance spectroscopy) followed by an overview of the prospects and possible applications of this material in electrochemical biosensors. In this context, we discuss some relevant trends including the monitoring of multiple biomarkers for cancer diagnostic, implantable devices for in vivo sensing and, development of point-of-care devices to real-time diagnostics.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Grafito/química , Nanoestructuras/química , Sistemas de Atención de Punto , Animales , Biomarcadores/análisis , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Humanos , Modelos Moleculares , Nanoestructuras/ultraestructura , Neoplasias/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...