Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
2.
Viruses ; 16(2)2024 02 04.
Article En | MEDLINE | ID: mdl-38400026

Powassan virus is an emerging tick-borne pathogen capable of causing severe neuroinvasive disease. As the incidence of human Powassan virus grows both in magnitude and geographical range, the development of sensitive detection methods for diagnostics and surveillance is critical. In this study, a Taqman-based triplex real-time PCR assay was developed for the simultaneous and quantitative detection of Powassan virus and Powassan virus lineage II (deer tick virus) in Ixodes scapularis ticks. An exon-exon junction internal control was built-in to allow for accurate detection of RNA quality and the failure of RNA extraction. The newly developed assay was also applied to survey deer tick virus in tick populations at 13 sites on Cape Cod and Martha's Vineyard Island in Massachusetts. The assay's performance was compared with the Luminex xMAP MultiFLEX Vector-borne Panel 2. The results suggested that the real-time PCR method was more sensitive. Powassan virus infection rates among ticks collected from these highly endemic tick areas ranged from 0.0 to 10.4%, highlighting the fine-scale geographic variations in deer tick virus presence in this region. Looking forward, our PCR assay could be adopted in other Powassan virus surveillance systems.


Encephalitis Viruses, Tick-Borne , Ixodes , Animals , Humans , Encephalitis Viruses, Tick-Borne/genetics , Real-Time Polymerase Chain Reaction , Watchful Waiting , RNA
3.
Pathogens ; 12(10)2023 Oct 13.
Article En | MEDLINE | ID: mdl-37887754

Reservoir host associations have been observed among and within Borrelia genospecies, and host complement-mediated killing is a major determinant in these interactions. In North America, only a subset of Borrelia burgdorferi lineages cause the majority of disseminated infections in humans. We hypothesize that differential resistance to human complement-mediated killing may be a major phenotypic determinant of whether a lineage can establish systemic infection. As a corollary, we hypothesize that borreliacidal action may differ among human subjects. To test these hypotheses, we isolated primary B. burgdorferi clones from field-collected ticks and determined whether the killing effects of human serum differed among those clones in vitro and/or whether these effects were consistent among human sera. Clones associated with human invasiveness did not show higher survival in human serum compared to noninvasive clones. These results indicate that differential complement-mediated killing of B. burgdorferi lineages is not a determinant of invasiveness in humans. Only one significant difference in the survivorship of individual clones incubated in different human sera was detected, suggesting that complement-mediated killing of B. burgdorferi is usually similar among humans. Mechanisms other than differential human complement-mediated killing of B. burgdorferi lineages likely explain why only certain lineages cause the majority of disseminated human infections.

4.
J Clin Med ; 12(20)2023 Oct 14.
Article En | MEDLINE | ID: mdl-37892661

With expanding concern about ticks, there is a general sense of uncertainty about the diagnosis and treatment of tick-borne diseases. The diagnosis process is often based on clinical judgment in conjunction with laboratory testing and can be pathogen specific. Treatments may require disease-dependent approaches, and co-infections complicate or increase the severity of the clinical picture. Measuring exposure indices in the tick has become popular among providers and their patients, though this practice is not universally understood, and certain public health agencies have voiced concerns regarding interpretation and rigor of testing. As many providers subscribe to or recommend these services to aid in pretest risk and exposure assessments, this work sought to clarify the role of pathogen testing human-biting ticks as a complement to the diagnostic pipeline and raises points that must be addressed through future research and interdisciplinary conversation. Future work is needed to develop quality control oversight for tick testing laboratories. Studies on the integration of tick testing with human cases to see how these services affect health outcomes are also needed. Alongside these, improvements in the quality and availability of diagnostics are of critical importance.

5.
Pathogens ; 12(7)2023 Jul 22.
Article En | MEDLINE | ID: mdl-37513809

Borrelia burgdorferi, the causative agent of Lyme disease, has a highly reduced genome and relies heavily on glycolysis for carbon metabolism. As such, established inhibitors of lactate dehydrogenase (LDH) were evaluated in cultures to determine the extent of their impacts on B. burgdorferi growth. Both racemic and enantiopure (AT-101) gossypol, as well as oxamate, galloflavin, and stiripentol, caused the dose-dependent suppression of B. burgdorferi growth in vitro. Racemic gossypol and AT-101 were shown to fully inhibit spirochetal growth at concentrations of 70.5 and 187.5 µM, respectively. Differences between racemic gossypol and AT-101 efficacy may indicate that the dextrorotatory enantiomer of gossypol is a more effective inhibitor of B. burgdorferi growth than the levorotatory enantiomer. As a whole, LDH inhibition appears to be a promising mechanism for suppressing Borrelia growth, particularly with bulky LDH inhibitors like gossypol.

6.
Insects ; 14(7)2023 Jul 12.
Article En | MEDLINE | ID: mdl-37504634

Tick-borne diseases and a tick-induced red meat allergy have become increasingly common in the northeastern USA and elsewhere. At the scale of local communities, few studies have documented tick densities or infection levels to characterize current conditions and provide a baseline for further monitoring. Using the town of Nantucket, MA, as a case study, we recorded tick densities by drag sampling along hiking trails in nature preserves on two islands. Nymphal blacklegged ticks (Ixodes scapularis Say) were most abundant at shadier sites and least common in grasslands and scrub oak thickets (Quercus ilicifolia). Lone star ticks (Amblyomma americanum L.) were common on Tuckernuck Island and rare on Nantucket Island, while both tick species were more numerous in 2021 compared to 2020 and 2022. We tested for pathogens in blacklegged nymphs at five sites over two years. In 2020 and 2021, infection levels among the four Nantucket Island sites averaged 10% vs. 19% for Borrelia burgdorferi, 11% vs. 15% for Babesia microti, and 17% (both years) for Anaplasma phagocytophilum, while corresponding levels were significantly greater on Tuckernuck in 2021. Our site-specific, quantitative approach represents a practical example of how potential exposure to tick-borne diseases can be monitored on a local scale.

7.
Microorganisms ; 11(6)2023 May 27.
Article En | MEDLINE | ID: mdl-37374922

Tick-borne zoonoses pose a serious burden to global public health. To understand the distribution and determinants of these diseases, the many entangled environment-vector-host interactions which influence risk must be considered. Previous studies have evaluated how passive tick testing surveillance measures connect with the incidence of human Lyme disease. The present study sought to extend this to babesiosis and anaplasmosis, two rare tick-borne diseases. Human cases reported to the Massachusetts Department of Health and submissions to TickReport tick testing services between 2015 and 2021 were retrospectively analyzed. Moderate-to-strong town-level correlations using Spearman's Rho (ρ) were established between Ixodes scapularis submissions (total, infected, adult, and nymphal) and human disease. Aggregated ρ values ranged from 0.708 to 0.830 for anaplasmosis and 0.552 to 0.684 for babesiosis. Point observations maintained similar patterns but were slightly weaker, with mild year-to-year variation. The seasonality of tick submissions and demographics of bite victims also correlated well with reported disease. Future studies should assess how this information may best complement human disease reporting and entomological surveys as proxies for Lyme disease incidence in intervention studies, and how it may be used to better understand the dynamics of human-tick encounters.

8.
Vector Borne Zoonotic Dis ; 23(6): 311-315, 2023 06.
Article En | MEDLINE | ID: mdl-37126383

In 2011, Ehrlichia muris eauclairensis (EME) was described as a human pathogen spread by the blacklegged tick, Ixodes scapularis. Until very recently, its reported distribution was limited to the upper midwestern United States, mainly in Minnesota and Wisconsin. In this study, we report the detection of EME DNA in 4 of 16,146 human biting I. scapularis ticks submitted from Massachusetts to a passive tick surveillance program. Active tick surveillance yielded evidence of EME local transmission in the northeastern United States through detection of EME DNA in 2 of 461 host-seeking I. scapularis nymphs, and in 2 white-footed mice (Peromyscus leucopus) of 491 rodent samples collected in the National Ecological Observatory Network (NEON) Harvard Forest site in Massachusetts.


Ixodes , Animals , Humans , Peromyscus , Ehrlichia/genetics , Massachusetts/epidemiology , Rodentia
9.
Vector Borne Zoonotic Dis ; 23(5): 303-305, 2023 05.
Article En | MEDLINE | ID: mdl-36944114

Borrelia burgdorferi is a human pathogen vectored by Ixodes ticks and maintained in nature by a suite of competent vertebrate reservoirs. White-tailed deer (WTD) are considered to be noncompetent reservoirs for B. burgdorferi. Sera from other deer species have been found to be borreliacidal, and similar mechanisms could explain the lack of reservoir competence of WTD. Therefore, we determined whether WTD serum can kill B. burgdorferi. Using an in vitro serum sensitivity assay and subculturing of spirochetes, we demonstrated that WTD serum effectively kills B. burgdorferi. The borreliacidal activity of WTD serum likely contributes to the inability of WTD to efficiently harbor and transmit B. burgdorferi.


Borrelia burgdorferi Group , Borrelia burgdorferi , Deer , Ixodes , Lyme Disease , Animals , Humans , Lyme Disease/veterinary
10.
Article En | MEDLINE | ID: mdl-36901316

This study aimed to analyze human-biting Ixodes scapularis ticks submitted to TickReport tick testing service from 2015-2019 in Massachusetts to (1) examine possible patterns of pathogen-positive adult and nymphal ticks over time and (2) explore how socioeconomic factors can influence tick submissions. A passive surveillance data set of ticks and tick-borne pathogens was conducted over 5 years (2015-2019) in Massachusetts. The percentages of four tick-borne pathogens: Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti, and Borrelia miyamotoi were determined by Massachusetts county and by month and year. Regression models were used to examine the association between zip-code-level socioeconomic factors and submissions. A total of 13,598 I. scapularis ticks were submitted to TickReport from Massachusetts residents. The infection rate of B. burgdorferi, A. phagocytophilum, and B. microti was 39%, 8%, and 7% in adult ticks; 23%, 6%, and 5% in nymphal ticks, respectively. A relatively higher level of education was associated with high tick submission. Passive surveillance of human-biting ticks and associated pathogens is important for monitoring tick-borne diseases, detecting areas with potentially high risks, and providing public information. Socioeconomic factors should be considered to produce more generalizable passive surveillance data and to target potentially underserved areas.


Ixodes , Tick-Borne Diseases , Animals , Humans , Babesia microti , Borrelia burgdorferi , Massachusetts/epidemiology , Nymph , Tick-Borne Diseases/epidemiology , Anaplasma , Regression Analysis
11.
Emerg Infect Dis ; 29(1): 145-148, 2023 01.
Article En | MEDLINE | ID: mdl-36573733

In July 2019, Bourbon virus RNA was detected in an Amblyomma americanum tick removed from a resident of Long Island, New York, USA. Tick infection and white-tailed deer (Odocoileus virginianus) serosurvey results demonstrate active transmission in New York, especially Suffolk County, emphasizing a need for surveillance anywhere A. americanum ticks are reported.


Deer , Ticks , Animals , New York/epidemiology , Arachnid Vectors
12.
Insects ; 15(1)2023 Dec 22.
Article En | MEDLINE | ID: mdl-38249014

Ticks are vectors of many human and animal zoonotic disease-causing agents causing significant global health and economic strain. Repellents and acaricides are integral to the human capacity for personal protection from tick bites. Nootkatone, a naturally occurring sesquiterpene found in the Alaskan cedar tree, grapefruit, and other sources, has been documented to be a potent acaricide. Research has also noted repellent effects against some tick species. In this study, our aim was to investigate the effect of synthetic, high-purity (+)-nootkatone on adult Ixodes scapularis, Dermacentor variabilis, and Amblyomma americanum ticks in an in vitro, vertical filter paper bioassay. (+)-nootkatone showed compelling tick repellency, but median effective concentrations (EC50) significantly differed among species. Ixodes scapularis were repelled at very low concentrations (EC50 = 0.87 ± 0.05 µg/cm2). Higher concentrations were required to repel D. variabilis (EC50 = 252 ± 12 µg/cm2) and A. americanum (EC50 = 2313 ± 179 µg/cm2). Significant post-exposure mortality, assessed 24 h after repellency trials, was also observed in I. scapularis but was absent entirely in D. variabilis and A. americanum. These tests demonstrate that nootkatone has a promising dual-action personal protection capacity against adult I. scapularis ticks, warranting further investigation in more natural environments and in the presence of host cues.

13.
PLoS One ; 17(11): e0269150, 2022.
Article En | MEDLINE | ID: mdl-36346809

Repellents serve an important role in bite protection. Tick repellents largely rely on biomechanisms that induce responses with direct contact, but synthetic pyrethroids used as spatial repellents against insects have received recent attention for potential use in tick protection systems. An in vitro vertical climb assay was designed to assess spatial repellency against Dermacentor variabilis, Amblyomma americanum, and Ixodes scapularis adult, female ticks. Climbing behavior was assessed with and without the presence of two spatial repellents, transfluthrin and metofluthrin. Repellency parameters were defined to simulate the natural questing behavior of ambushing ticks, including measures of detachment, pseudo-questing duration, climbing deterrence, and activity. Significant effects were observed within each parameter. D. variabilis showed the greatest general susceptibility to each repellent, followed by A. americanum, and I. scapularis. The most important and integrative measure of repellency was climbing deterrence-a measure of the spatial repellent's ability to disrupt a tick's natural propensity to climb. Transfluthrin deterred 75% of D. variabilis, 67% of A. americanum, and 50% of I. scapularis. Metofluthrin was slightly more effective, deterring 81% of D. variabilis, 73% of A. americanum, and 72% of I. scapularis. The present study poses a novel paradigm for repellency and reports a preliminary assessment of spatial repellent effect on tick behavior. Further research will assess spatial repellency in a more natural setting, scale exposure conditions, and incorporate host cues.


Dermacentor , Insect Repellents , Ixodes , Ixodidae , Animals , Female , Amblyomma , Insect Repellents/pharmacology
14.
PLoS One ; 17(6): e0269266, 2022.
Article En | MEDLINE | ID: mdl-35648767

Borrelia burgdorferi is an important tickborne human pathogen comprising several strains based on nucleotide sequence of the outer surface protein C (ospC) gene. Detection and characterization of different ospC genotypes is vital for research on B. burgdorferi and the risk it poses to humans. Here we present a novel, multiplex assay based on Luminex xMAP technology for the detection of B. burgdorferi ospC genotypes. The assay has five major steps: amplification of the ospC gene, hydrolyzation of surplus primers and nucleotides, incorporation of biotinylated nucleotides into the template DNA, hybridization to Luminex microspheres, and detection of fluorescent signals corresponding to each ospC genotype. We validated the protocol by comparing results obtained from our method against results from an established ospC genotyping method. This protocol can be used for the characterization of ospC genotypes in B. burgdorferi infected ticks, reservoir hosts, and/or clinical samples.


Borrelia burgdorferi , Antigens, Bacterial , Bacterial Outer Membrane Proteins , Borrelia burgdorferi/genetics , DNA Primers , Genotype , Humans , Technology
15.
J Med Entomol ; 59(4): 1484-1487, 2022 07 13.
Article En | MEDLINE | ID: mdl-35640022

Haemaphysalis longicornis Neumann, a vector of various pathogens with medical and veterinary importance, is a recent invasive species in the United States. Like many tick species, discerning H. longicornis from congeners can be a challenge. To overcome the difficulty of morphological identification, a Taqman quantitative real-time PCR based on the internal transcribed spacer gene (ITS2) was developed for quick and accurate identification of H. longicornis with a detection limit of as low as 19.8 copies. We also applied the assay to 76,004 archived ticks and found 37 ticks were H. longicornis. One H. longicornis was submitted from Warren, Somerset County, New Jersey in June 2015, 2 yr earlier than the initial report from the United States. None of these 37 H. longicornis was positive for Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, B. miyamotoi, B. mayonii, Babesia microti, or Ehrlichia muris-like agent.


Anaplasma phagocytophilum , Borrelia , Ixodidae , Ticks , Anaplasma phagocytophilum/genetics , Animals , Ixodidae/genetics , Real-Time Polymerase Chain Reaction
16.
Insects ; 13(2)2022 Jan 22.
Article En | MEDLINE | ID: mdl-35206690

A wide range of pathogens, such as bacteria, viruses, and parasites can be transmitted by ticks and can cause diseases, such as Lyme disease, anaplasmosis, or Rocky Mountain spotted fever. Landscape and climate changes are driving the geographic range expansion of important tick species. The morphological identification of ticks is critical for the assessment of disease risk; however, this process is time-consuming, costly, and requires qualified taxonomic specialists. To address this issue, we constructed a tick identification tool that can differentiate the most encountered human-biting ticks, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis, by implementing artificial intelligence methods with deep learning algorithms. Many convolutional neural network (CNN) models (such as VGG, ResNet, or Inception) have been used for image recognition purposes but it is still a very limited application in the use of tick identification. Here, we describe the modified CNN-based models which were trained using a large-scale molecularly verified dataset to identify tick species. The best CNN model achieved a 99.5% accuracy on the test set. These results demonstrate that a computer vision system is a potential alternative tool to help in prescreening ticks for identification, an earlier diagnosis of disease risk, and, as such, could be a valuable resource for health professionals.

17.
Emerg Infect Dis ; 27(12): 3193-3195, 2021 12.
Article En | MEDLINE | ID: mdl-34808077

During 2013-2019, Borrelia miyamotoi infection was detected in 19 US states. Infection rate was 0.5%-3.2%; of B. miyamotoi-positive ticks, 59.09% had concurrent infections. B. miyamotoi is homogeneous with 1 genotype from Ixodes scapularis ticks in northeastern and midwestern states and 1 from I. pacificus in western states.


Borrelia Infections , Borrelia , Ixodes , Animals , Borrelia/genetics , Borrelia Infections/epidemiology , Humans , United States/epidemiology
18.
Emerg Infect Dis ; 27(12): 3128-3132, 2021 12.
Article En | MEDLINE | ID: mdl-34648421

During 2018, Heartland virus RNA was detected in an Amblyomma americanum tick removed from a resident of Suffolk County, New York, USA. The person showed seroconversion. Tick surveillance and white-tailed deer (Odocoileus virginianus) serosurveys showed widespread distribution in Suffolk County, emphasizing a need for disease surveillance anywhere A. americanum ticks are established or emerging.


Deer , Phlebovirus , Ticks , Animals , Humans , New York/epidemiology
19.
Longhua Chin Med ; 42021 Jun.
Article En | MEDLINE | ID: mdl-34316676

BACKGROUND: Artemisia annua L.is a well-established medicinal herb used for millennia to treat parasites and fever-related ailments caused by various microbes. Although effective against many infectious agents, the plant is not a miracle cure and there are infections where it has proved ineffective or limited. It is important to report those failures. METHODS: Here artemisinin, artesunate and dried leaf slurries of A. annua were used daily for 6 days in vivo against Babesia microti in mice 2 days post infection at 100 µg artemisinin/kg body weight. Parasitemia was measure before and 15 days days post treatment. Artemisinin and extracts of A. annua also were tested in vitro against six Candida sp. at artemisinin concentrations up to 180 µM and growth measured after cultures were fed drugs once at different stages of growth and also after repeated dosing. RESULTS: A. annua, artesunate, and artemisinin were ineffective in reducing or eliminating parasitemia in B. microti-infected mice treated at 100 µg artemisinin/kg body weight. Although the growth of exponential cultures of many of the tested Candida sp. was inhibited, the response was not sustained and both artemisinin and Artemisia were essentially ineffective at concentrations of artemisinin at up to 180 µM of artemisinin. CONCLUSIONS: Together these results show that artemisinin, its derivatives, and A. annua are ineffective against B. microti and at least six species of Candida.

20.
Vector Borne Zoonotic Dis ; 21(2): 86-91, 2021 02.
Article En | MEDLINE | ID: mdl-33316206

The blacklegged tick, Ixodes scapularis, can acquire and transmit tick-borne pathogens (TBPs) responsible for diseases such as human granulocytic anaplasmosis (Anaplasma phagocytophilum [ANPH]), babesiosis (Babesia microti [BABE]), Lyme borreliosis (Borrelia burgdorferi sensu lato [BBSL]), and the relatively novel relapsing fever-like illness, Borrelia miyamotoi (BMIY) disease in the northeastern United States. Coinfections with these pathogens are becoming increasingly more common in I. scapularis and their hosts, likely attributed to their shared enzootic cycles. Urban habitats are favorable to host species such as white-tailed deer (Odocoileus virginianus) and these ungulates are known to be important to I. scapularis for reproduction and dispersal in North America. To understand the relationship between TBPs, white-tailed deer, and I. scapularis, we sampled eight sites across central Maryland collecting I. scapularis using standard tick dragging/flagging methods and retrieved others from deer carcasses. Pathogenic TBP species in each tick were determined using qPCR. In total, 903 adult ticks (deer: n = 573; questing: n = 330) revealed landscape-level prevalence of ANPH (27.8%), BABE (1.3%), BBSL (14.6%), and BMIY (0.8%) as singular infections overall. However, secondary coinfections of ANPH and BBSL were highest (9.9%) in ticks feeding from deer while associations of BBSL and BABE (4.2%) were highest in questing ticks. Results from this study provide evidence suggesting that adult I. scapularis acquire pathogenic species through phenologically associated host use, and thus, subsequent infections found in adults may provide insights into coinfection relationships.


Borrelia burgdorferi , Coinfection , Deer , Ixodes , Animals , Coinfection/epidemiology , Coinfection/veterinary , Maryland
...