Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Sci Rep ; 12(1): 14561, 2022 08 26.
Article En | MEDLINE | ID: mdl-36028520

Anti-IL17A therapies have proven effective for numerous inflammatory diseases including psoriasis, axial spondylitis and psoriatic arthritis. Modulating and/or antagonizing protein-protein interactions of IL17A cytokine binding to its cell surface receptors with oral therapies offers the promise to bring forward biologics-like efficacy in a pill to patients. We used an NMR-based fragment screen of recombinant IL17A to uncover starting points for small molecule IL17A antagonist discovery. By examining chemical shift perturbations in 2D [1H, 13C-HSQC] spectra of isotopically labeled IL17A, we discovered fragments binding the cytokine at a previously undescribed site near the IL17A C-terminal region, albeit with weak affinity (> 250 µM). Importantly this binding location was distinct from previously known chemical matter modulating cytokine responses. Subsequently through analog screening, we identified related compounds that bound symmetrically in this novel site with two copies. From this observation we employed a linking strategy via structure-based drug design and obtained compounds with increased binding affinity (< 50 nM) and showed functional inhibition of IL17A-induced cellular signaling (IC50~1 µM). We also describe a fluorescence-based probe molecule suitable to discern/screen for additional molecules binding in this C-terminal site.


Arthritis, Psoriatic , Axial Spondyloarthritis , Interleukin-17 , Psoriasis , Cytokines , Drug Design , Humans , Interleukin-17/antagonists & inhibitors
2.
Medchemcomm ; 10(6): 974-984, 2019 Jun 01.
Article En | MEDLINE | ID: mdl-31303996

Phenotypic screening provides compounds with very limited target cellular localization data. In order to select the most appropriate target identification methods, determining if a compound acts at the cell-surface or intracellularly can be very valuable. In addition, controlling cell-permeability of targeted therapeutics such as antibody-drug conjugates (ADCs) and targeted nanoparticle formulations can reduce toxicity from extracellular release of drug in undesired tissues or direct activity in bystander cells. By incorporating highly polar, anionic moieties via short polyethylene glycol linkers into compounds with known intracellular, and cell-surface targets, we have been able to correlate the cellular activity of compounds with their subcellular site of action. For compounds with nuclear (Brd, PARP) or cytosolic (dasatinib, NAMPT) targets, addition of the permeability modifying group (small sulfonic acid, polycarboxylic acid, or a polysulfonated fluorescent dye) results in near complete loss of biological activity in cell-based assays. For cell-surface targets (H3, 5HT1A, ß2AR) significant activity was maintained for all conjugates, but the results were more nuanced in that the modifiers impacted binding/activity of the resulting conjugates. Taken together, these results demonstrate that small anionic compounds can be used to control cell-permeability independent of on-target activity and should find utility in guiding target deconvolution studies and controlling drug distribution of targeted therapeutics.

3.
Sci Rep ; 9(1): 9089, 2019 06 24.
Article En | MEDLINE | ID: mdl-31235749

IL-36 cytokines are pro-inflammatory members of the IL-1 family that are upregulated in inflammatory disorders. Specifically, IL-36γ is highly expressed in active psoriatic lesions and can drive pro-inflammatory processes in 3D human skin equivalents supporting a role for this target in skin inflammation. Small molecule antagonists of interleukins have been historically challenging to generate. Nevertheless, we performed a small molecule high-throughput screen to identify IL-36 antagonists using a novel TR-FRET binding assay. Several compounds, including 2-oxypyrimidine containing structural analogs of the marketed endothelin receptor A antagonist Ambrisentan, were identified as hits from the screen. A-552 was identified as a the most potent antagonist of human IL-36γ, but not the closely related family member IL-36α, was capable of attenuating IL-36γ induced responses in mouse and human disease models. Additionally, x-ray crystallography studies identified key amino acid residues in the binding pocket present in human IL-36γ that are absent in human IL-36α. A-552 represents a first-in-class small molecule antagonist of IL-36 signaling that could be used as a chemical tool to further investigate the role of this pathway in inflammatory skin diseases such as psoriasis.


Interleukin-1/antagonists & inhibitors , Psoriasis/drug therapy , Small Molecule Libraries/pharmacology , Animals , Gene Expression Regulation/drug effects , Humans , Mice , Psoriasis/metabolism , Psoriasis/pathology , Skin/drug effects , Skin/pathology , Small Molecule Libraries/therapeutic use
4.
Nat Commun ; 10(1): 19, 2019 01 03.
Article En | MEDLINE | ID: mdl-30604761

Protein methyltransferases (PMTs) comprise a major class of epigenetic regulatory enzymes with therapeutic relevance. Here we present a collection of chemical probes and associated reagents and data to elucidate the function of human and murine PMTs in cellular studies. Our collection provides inhibitors and antagonists that together modulate most of the key regulatory methylation marks on histones H3 and H4, providing an important resource for modulating cellular epigenomes. We describe a comprehensive and comparative characterization of the probe collection with respect to their potency, selectivity, and mode of inhibition. We demonstrate the utility of this collection in CD4+ T cell differentiation assays revealing the potential of individual probes to alter multiple T cell subpopulations which may have implications for T cell-mediated processes such as inflammation and immuno-oncology. In particular, we demonstrate a role for DOT1L in limiting Th1 cell differentiation and maintaining lineage integrity. This chemical probe collection and associated data form a resource for the study of methylation-mediated signaling in epigenetics, inflammation and beyond.


Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Histones/metabolism , Protein Methyltransferases/antagonists & inhibitors , Protein Processing, Post-Translational/drug effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Enzyme Assays/methods , Epigenomics/methods , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , Jurkat Cells , Methylation/drug effects , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mice, Inbred C57BL , Protein Methyltransferases/metabolism , Protein Processing, Post-Translational/genetics , Th1 Cells/drug effects , Th1 Cells/physiology
5.
J Clin Invest ; 129(1): 349-363, 2019 01 02.
Article En | MEDLINE | ID: mdl-30530991

While immune checkpoint blockade leads to potent antitumor efficacy, it also leads to immune-related adverse events in cancer patients. These toxicities stem from systemic immune activation resulting in inflammation of multiple organs, including the gastrointestinal tract, lung, and endocrine organs. We developed a dual variable domain immunoglobulin of anti-CTLA4 antibody (anti-CTLA4 DVD, where CTLA4 is defined as cytotoxic T lymphocyte-associated antigen-4) possessing an outer tumor-specific antigen-binding site engineered to shield the inner anti-CTLA4-binding domain. Upon reaching the tumor, the outer domain was cleaved by membrane type-serine protease 1 (MT-SP1) present in the tumor microenvironment, leading to enhanced localization of CTLA4 blockade. Anti-CTLA4 DVD markedly reduced multiorgan immune toxicity by preserving tissue-resident Tregs in Rag 1-/- mice that received naive donor CD4+ T cells from WT C57BL/6j mice. Moreover, anti-CTLA4 DVD induced potent antitumor effects by decreasing tumor-infiltrating Tregs and increasing the infiltration of antigen-specific CD8+ T lymphocytes in TRAMP-C2-bearing C57BL/6j mice. Treg depletion was mediated through the antibody-dependent cellular cytotoxicity (ADCC) mechanism, as anti-CTLA4 without the FcγR-binding portion (anti-CTLA4 DANA) spared Tregs, preventing treatment-induced toxicities. In summary, our results demonstrate an approach to anti-CTLA4 blockade that depletes tumor-infiltrating, but not tissue-resident, Tregs, preserving antitumor effects while minimizing toxicity. Thus, our tumor-conditional anti-CTLA4 DVD provides an avenue for uncoupling antitumor efficacy from immunotherapy-induced toxicities.


Antineoplastic Agents, Immunological/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Immunotherapy , Neoplasms/therapy , Single-Chain Antibodies/pharmacology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/drug effects , Animals , Antineoplastic Agents, Immunological/immunology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Cell Line, Tumor , HEK293 Cells , Humans , Immunity, Cellular , Male , Mice , Mice, Knockout , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Single-Chain Antibodies/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
6.
J Med Chem ; 61(19): 8504-8535, 2018 10 11.
Article En | MEDLINE | ID: mdl-29718665

Small-molecule (SM) leads in the early drug discovery pipeline are progressed primarily based on potency against the intended target(s) and selectivity against a very narrow slice of the proteome. So, why is there a tendency to wait until SMs are matured before probing for a deeper mechanistic understanding? For one, there is a concern about the interpretation of complex -omic data outputs and the resources needed to test these hypotheses. However, with recent advances in broad endpoint profiling assays that have companion reference databases and refined technology integration strategies, we argue that data complexity can translate into meaningful decision-making. This same strategy can also prioritize phenotypic screening hits to increase the likelihood of accessing unprecedented target space. In this Perspective. we will highlight a cohesive process that supports SM hit prosecution, providing a data-driven rationale and a suite of methods for direct identification of SM targets driving relevant biological end points.


Drug Discovery , Proteome/drug effects , Small Molecule Libraries/pharmacology , Animals , High-Throughput Screening Assays , Humans
7.
J Biol Chem ; 293(2): 403-411, 2018 01 12.
Article En | MEDLINE | ID: mdl-29180446

IL-36 cytokines signal through the IL-36 receptor (IL-36R) and a shared subunit, IL-1RAcP (IL-1 receptor accessory protein). The activation mechanism for the IL-36 pathway is proposed to be similar to that of IL-1 in that an IL-36R agonist (IL-36α, IL-36ß, or IL-36γ) forms a binary complex with IL-36R, which then recruits IL-1RAcP. Recent studies have shown that IL-36R interacts with IL-1RAcP even in the absence of an agonist. To elucidate the IL-36 activation mechanism, we considered all possible binding events for IL-36 ligands/receptors and examined these events in direct binding assays. Our results indicated that the agonists bind the IL-36R extracellular domain with micromolar affinity but do not detectably bind IL-1RAcP. Using surface plasmon resonance (SPR), we found that IL-1RAcP also does not bind IL-36R when no agonist is present. In the presence of IL-36α, however, IL-1RAcP bound IL-36R strongly. These results suggested that the main pathway to the IL-36R·IL-36α·IL-1RAcP ternary complex is through the IL-36R·IL-36α binary complex, which recruits IL-1RAcP. We could not measure the binding affinity of IL-36R to IL-1RAcP directly, so we engineered a fragment crystallizable-linked construct to induce IL-36R·IL-1RAcP heterodimerization and predicted the binding affinity during a complete thermodynamic cycle to be 74 µm The SPR analysis also indicated that the IL-36R antagonist IL-36Ra binds IL-36R with higher affinity and a much slower off rate than the IL-36R agonists, shedding light on IL-36 pathway inhibition. Our results reveal the landscape of IL-36 ligand and receptor interactions, improving our understanding of IL-36 pathway activation and inhibition.


Chemokine CXCL1/metabolism , Interleukin-1/metabolism , Receptors, Interleukin/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Interleukin-1 Receptor Accessory Protein/metabolism , Kinetics , Protein Binding , Surface Plasmon Resonance
8.
J Am Chem Soc ; 139(46): 16822-16829, 2017 11 22.
Article En | MEDLINE | ID: mdl-29068676

Ligand-binding assays are the linchpin of drug discovery and medicinal chemistry. Cell-surface receptors and their ligands have traditionally been characterized by radioligand-binding assays, which have low temporal and spatial resolution and entail safety risks. Here, we report a powerful alternative (GlycoFRET), where terbium-labeled fluorescent reporters are irreversibly attached to receptors by metabolic glycan engineering. For the first time, we show time-resolved fluorescence resonance energy transfer between receptor glycans and fluorescently labeled ligands. We describe GlycoFRET for a GPI-anchored receptor, a G-protein-coupled receptor, and a heterodimeric cytokine receptor in living cells with excellent sensitivity and high signal-to-background ratios. In contrast to previously described methods, GlycoFRET does not require genetic engineering or antibodies to label receptors. Given that all cell-surface receptors are glycosylated, we expect that GlycoFRET can be generalized with applications in chemical biology and biotechnology, such as target engagement, receptor pharmacology, and high-throughput screening.


Fluorescence Resonance Energy Transfer/methods , GPI-Linked Proteins/metabolism , Polysaccharides/metabolism , Receptors, Cell Surface/metabolism , Cell Survival , Folate Receptors, GPI-Anchored/metabolism , Humans , Ligands , Receptors, Histamine H3/metabolism , Receptors, Interleukin/metabolism , Terbium
9.
Bioorg Med Chem Lett ; 27(15): 3317-3325, 2017 08 01.
Article En | MEDLINE | ID: mdl-28610984

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Urea/analogs & derivatives , Urea/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytokines/chemistry , Cytokines/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Isoindoles/therapeutic use , Mice , Models, Molecular , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/therapeutic use
10.
Mol Cancer Ther ; 16(7): 1236-1245, 2017 07.
Article En | MEDLINE | ID: mdl-28468779

Cancer cells are highly reliant on NAD+-dependent processes, including glucose metabolism, calcium signaling, DNA repair, and regulation of gene expression. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ salvage from nicotinamide, has been investigated as a target for anticancer therapy. Known NAMPT inhibitors with potent cell activity are composed of a nitrogen-containing aromatic group, which is phosphoribosylated by the enzyme. Here, we identified two novel types of NAM-competitive NAMPT inhibitors, only one of which contains a modifiable, aromatic nitrogen that could be a phosphoribosyl acceptor. Both types of compound effectively deplete cellular NAD+, and subsequently ATP, and produce cell death when NAMPT is inhibited in cultured cells for more than 48 hours. Careful characterization of the kinetics of NAMPT inhibition in vivo allowed us to optimize dosing to produce sufficient NAD+ depletion over time that resulted in efficacy in an HCT116 xenograft model. Our data demonstrate that direct phosphoribosylation of competitive inhibitors by the NAMPT enzyme is not required for potent in vitro cellular activity or in vivo antitumor efficacy. Mol Cancer Ther; 16(7); 1236-45. ©2017 AACR.


Colorectal Neoplasms/drug therapy , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Cytokines/genetics , DNA Repair/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Mice , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Xenograft Model Antitumor Assays
11.
Bioorg Med Chem Lett ; 27(7): 1576-1583, 2017 04 01.
Article En | MEDLINE | ID: mdl-28254486

Herein we disclose SAR studies of a series of dimethylamino pyrrolidines which we recently reported as novel inhibitors of the PRC2 complex through disruption of EED/H3K27me3 binding. Modification of the indole and benzyl moieties of screening hit 1 provided analogs with substantially improved binding and cellular activities. This work culminated in the identification of compound 2, our nanomolar proof-of-concept (PoC) inhibitor which provided on-target tumor growth inhibition in a mouse xenograft model. X-ray crystal structures of several inhibitors bound in the EED active-site are also discussed.


Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Pyrrolidines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Ligands , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Polycomb Repressive Complex 2/chemistry , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
12.
Medchemcomm ; 8(4): 789-795, 2017 Apr 01.
Article En | MEDLINE | ID: mdl-30108797

Determination of target engagement following drug administration under physiological conditions is essential for understanding clinical outcomes of therapeutic candidates. While the list of potential techniques that enable studies of target engagement is continuously expanding, identification of the best method to evaluate interactions between a ligand and its cellular binding partner(s) remains far from straightforward. We developed and compared the applicability of two label-based techniques; inverse electron demand Diels-Alder (IED-DA) ligation-based pull-down and TR-FRET assays for in-cell determination of target occupancy of c-Src kinase and p38-α kinase by the reversible inhibitor Dasatinib. Significantly, none of the assays required engineering proteins-of-interest. Moreover, cellular TR-FRET assay emerged as a very promising platform for the determination of target occupancy of specific protein in a high-throughput manner. Our studies suggest that both IED-DA assay and TR-FRET assay should be considered as methods of choice for the determination of target engagement of small molecule protein binders in live cells.

13.
Chembiochem ; 17(2): 150-4, 2016 Jan.
Article En | MEDLINE | ID: mdl-26574896

Membrane-bound proteins are important pharmaceutical drug targets, yet few strategies exist for the identification of small-molecule-targeted membrane proteins in live-cell systems. By exploiting metabolic glycan engineering of cell membrane proteins, we have developed an in situ glycan-mediated ligand-controlled click ("GLiCo-Click") chemistry methodology that enables the attachment of small-molecule chemical probes to their receptor protein through glycans on live cells. In addition to enabling receptor enrichment from cell lysates, this strategy can be used to demonstrate target receptor engagement and enables the molecular characterization of receptors.


Drug Delivery Systems , Polysaccharides/chemistry , Amino Acid Sequence , Antigens, Surface/chemistry , Chromatography, Liquid , Click Chemistry , Flow Cytometry , Ligands , Microscopy, Confocal , Molecular Sequence Data , Molecular Structure
14.
J Biomol Screen ; 21(2): 201-11, 2016 Feb.
Article En | MEDLINE | ID: mdl-26676096

The pharmaceutical industry has been continually challenged by dwindling target diversity. To obviate this trend, phenotypic screens have been adopted, complementing target-centric screening approaches. Phenotypic screens identify drug leads using clinically relevant and translatable mechanisms, remaining agnostic to targets. While target anonymity is advantageous early in the drug discovery process, it poses challenges to hit progression, including the development of backup series, retaining desired pharmacology during optimization, discovery of markers, and understanding mechanism-driven toxicity. Consequently, significant effort has been expended to elaborate the targets and mechanisms at work for promising screening hits. Affinity capture is commonly leveraged, where the compounds are linked to beads and targets are abstracted from cell homogenates. This technique has proven effective for identifying targets of kinase, PARP, and HDAC inhibitors, and examples of new targets have been reported. Herein, a three-pronged approach to target deconvolution by affinity capture is described, including the implementation of a uniqueness index that helps discriminate between bona fide targets and background. The effectiveness of this approach is demonstrated using characterized compounds that act on known and noncanonical target classes. The platform is subsequently applied to phenotypic screening hits, identifying candidate targets. The success rate of bead-based affinity capture is discussed.


Cell Survival/drug effects , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Pharmaceutical Preparations/chemistry , Drug Industry/methods , Phenotype
15.
Protein Expr Purif ; 75(1): 55-62, 2011 Jan.
Article En | MEDLINE | ID: mdl-20826216

Acidic mammalian chitinase (AMCase) is an enzyme that selectively degrades the biopolymer chitin. Several chitinase enzymes are utilized by mammals to hydrolyze chitin encountered by inhalation and ingestion. AMCase is distinct from other mammalian chitinases as its activity is retained in strongly acidic conditions (pH <2.0). AMCase expression is induced by antigen-induced mouse models of allergic lung inflammation. This protein has also been implicated in the pathogenesis of asthma although its precise role is poorly defined. We describe a novel way to express and purify active murine AMCase. This material retains properties observed in mouse bronchoalveolar lavage (BAL) fluid with regard to pH preference of activity and its inhibition by cyclic peptide inhibitors argifin and argadin. We found that chitinase in BAL from both antigen-challenged and control animals have similar properties in this regard. This strongly supports the notion the same enzyme (AMCase) gives rise to chitinase activity in both challenged and unchallenged animals. We also describe expression of active human AMCase. The methods described in this paper provide a reliable source of recombinant AMCase that can be utilized to expand understanding of AMCase's role in regulating allergic inflammation.


Chitinases/genetics , Chitinases/metabolism , Cloning, Molecular/methods , Amino Acid Sequence , Animals , Bronchoalveolar Lavage Fluid , COS Cells , Cell Line , Chitinases/isolation & purification , Chlorocebus aethiops , Gene Expression , Humans , Mice , Molecular Sequence Data , Peptides, Cyclic/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
16.
Bioorg Med Chem Lett ; 20(2): 612-7, 2010 Jan 15.
Article En | MEDLINE | ID: mdl-20004576

The ectodomain of HIV-1 gp41 mediates the fusion of viral and host cellular membranes. The peptide-based drug Enfuvirtide(1) is precedent that antagonists of this fusion activity may act as anti HIV-agents. Here, NMR screening was used to discover non-peptide leads against this target and resulted in the discovery of a new benzamide 1 series. This series is non-peptide, low molecular weight, and analogs have activity in a cell fusion assay with EC50 values ranging 3-41microM. Structural work on the gp41/benzamide 1 complex was determined by NMR spectroscopy using a designed model peptide system that mimics an open pocket of the fusogenic form of the protein.


Anti-HIV Agents/chemistry , Benzamides/chemistry , HIV Envelope Protein gp41/chemistry , HIV Fusion Inhibitors/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Benzamides/chemical synthesis , Benzamides/pharmacology , Crystallography, X-Ray , Enfuvirtide , HIV Envelope Protein gp41/metabolism , HIV Envelope Protein gp41/pharmacology , HIV Fusion Inhibitors/chemical synthesis , HIV Fusion Inhibitors/pharmacology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Protein Binding , Structure-Activity Relationship
17.
Proteins ; 76(3): 536-47, 2009 Aug 15.
Article En | MEDLINE | ID: mdl-19274732

B-type natriuretic peptide (BNP) is a naturally secreted regulatory hormone that influences blood pressure and vascular water retention in human physiology. The plasma BNP concentration is a clinically recognized biomarker for various cardiovascular diseases. Quantitative detection of BNP can be achieved in immunoassays using the high-affinity monoclonal IgG1 antibody 106.3, which binds an epitope spanning residues 5-13 of the mature bioactive peptide. To understand the structural basis of this molecular recognition, we crystallized the Fab fragment complexed with the peptide epitope and determined the three-dimensional structure by X-ray diffraction to 2.1 A resolution. The structure reveals the detailed interactions that five of the complementarity-determining regions make with the partially folded peptide. Thermodynamic measurements using fluorescence spectroscopy suggest that the interaction is enthalpy driven, with an overall change in free energy of binding, DeltaG = -54 kJ/mol, at room temperature. The parameters are interpreted on the basis of the structural information. The kinetics of binding suggest a diffusion-limited mechanism, whereby the peptide easily adopts a bound conformation upon interaction with the antibody. Moreover, comparative analysis with alanine-scanning results of the epitope explains the basis of selectivity for BNP over other related natriuretic peptides.


Antibodies, Monoclonal/chemistry , Antigen-Antibody Complex/chemistry , Crystallography, X-Ray , Natriuretic Peptide, Brain/chemistry , Animals , Cell Line , Epitopes/chemistry , Mice , Protein Conformation , Thermodynamics
18.
Biochemistry ; 48(9): 1870-7, 2009 Mar 10.
Article En | MEDLINE | ID: mdl-19216516

Alzheimer's disease (AD) is a neurodegenerative disorder that is linked to the presence of amyloid beta-peptides that can form insoluble fibrils or soluble oligomeric assemblies. Soluble forms are present in the brains and tissues of Alzheimer's patients, and their presence correlates with disease progression. Long-lived soluble forms can be generated in vitro by using small amounts of aliphatic hydrocarbon chains of detergents or fatty acids in preparations of amyloid beta-peptides. Using NMR, we have characterized soluble oligomers of Abeta preglobulomer and globulomer that are stable and alter synaptic activity. The NMR data indicate that these soluble forms have a mixed parallel and antiparallel beta-sheet structure that is different from fibrils which contain only parallel beta-sheets. Using the structural data, we engineered a disulfide bond into the soluble Abeta globulomer to give a "new" soluble antigen that is stable, homogeneous, and binds with the same affinity to selective antibodies as the parent wt globulomer.


Amyloid beta-Peptides/chemistry , Protein Structure, Quaternary , Protein Structure, Secondary , Amino Acid Sequence , Amyloid/chemistry , Amyloid/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Humans , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Multimerization , Solubility
19.
J Proteome Res ; 7(11): 4807-20, 2008 Nov.
Article En | MEDLINE | ID: mdl-18828628

The catalytic activity of methionine aminopeptidase-2 (MetAP2) has been pharmacologically linked to cell growth, angiogenesis, and tumor progression, making this an attractive target for cancer therapy. An assay for monitoring specific protein changes in response to MetAP2 inhibition, allowing pharmacokinetic (PK)/pharmacodynamic (PD) models to be established, could dramatically improve clinical decision-making. Candidate MetAP2-specific protein substrates were discovered from undigested cell culture-derived proteomes by MALDI-/SELDI-MS profiling and a biochemical method using (35)S-Met labeled protein lysates. Substrates were identified either as intact proteins by FT-ICR-MS or applying in-gel protease digestions followed by LC-MS/MS. The combination of these approaches led to the discovery of novel MetAP2-specific substrates including thioredoxin-1 (Trx-1), SH3 binding glutamic acid rich-like protein (SH3BGRL), and eukaryotic elongation factor-2 (eEF2). These studies also confirmed glyceraldehye 3-phosphate dehydrogenase (GAPDH) and cyclophillin A (CypA) as MetAP2 substrates. Additional data in support of these proteins as MetAP2-specific substrates were provided by in vitro MetAP1/MetAP2 enzyme assays with the corresponding N-terminal derived peptides and 1D/2D Western analyses of cellular and tissue lysates. FT-ICR-MS characterization of all intact species of the 18 kDa substrate, CypA, enabled a SELDI-MS cell-based assay to be developed for correlating N-terminal processing and inhibition of proliferation. The MetAP2-specific protein substrates discovered in this study have diverse properties that should facilitate the development of reagents for testing in preclinical and clinical environments.


Aminopeptidases/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Metalloendopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Biomarkers, Tumor/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , K562 Cells , Leukemia, Erythroblastic, Acute/pathology , Mice , Molecular Weight , Protease Inhibitors/classification , Proteomics/methods , Time Factors
20.
Anal Biochem ; 383(2): 186-93, 2008 Dec 15.
Article En | MEDLINE | ID: mdl-18790690

A high-throughput and sensitive liquid chromatography/tandem mass spectrometry assay was established to detect total unlabeled hepatitis C virus inhibitor concentrations in replicon cells. The intracellular concentrations determined by this assay correlated well with concentrations obtained using radiolabeled compound. Some compounds accumulated inside the cells, with concentrations up to 300-fold higher than the input concentration. Confocal microscopic evaluation of two fluorescent-tagged inhibitors confirmed high accumulation inside the cells, sequestered inside vesicles within the cytoplasm. Incubation of cells with compound at 4 degrees C revealed that nonspecific binding to the outside of the cell membrane and to the cell culture plate occurred for some compounds. Therefore, the total concentration of compound extracted at 37 degrees C was reduced by the amount that was nonspecifically bound at 4 degrees C to yield the amount of compound inside the cells. A modification of the protocol was used for compounds with low intracellular concentrations in which cells were harvested with trypsin-EDTA prior to extraction. This eliminated the nonspecific binding to the cell culture plate and decreased the overall background of the assay. This assay was used to understand differences in cellular potency between compounds and the effects of serum proteins on the metabolic stability of compounds during incubation with cells.


Antiviral Agents/chemistry , Intracellular Space/chemistry , Animals , Antiviral Agents/analysis , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cattle , Cell Membrane/metabolism , Cells, Cultured , Chromatography, Liquid , Hepacivirus/drug effects , Humans , Incubators , Microscopy, Confocal , Staining and Labeling , Tandem Mass Spectrometry
...