Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nat Commun ; 15(1): 5011, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866742

RESUMEN

Site-directed insertion is a powerful approach for generating mutant alleles, but low efficiency and the need for customisation for each target has limited its application. To overcome this, we developed a highly efficient targeted insertional mutagenesis system, CRIMP, and an associated plasmid toolkit, CRIMPkit, that disrupts native gene expression by inducing complete transcriptional termination, generating null mutant alleles without inducing genetic compensation. The protocol results in a high frequency of integration events and can generate very early targeted insertions, during the first cell division, producing embryos with expression in one or both halves of the body plan. Fluorescent readout of integration events facilitates selection of successfully mutagenized fish and, subsequently, visual identification of heterozygous and mutant animals. Together, these advances greatly improve the efficacy of generating and studying mutant lines. The CRIMPkit contains 24 ready-to-use plasmid vectors to allow easy and complete mutagenesis of any gene in any reading frame without requiring custom sequences, modification, or subcloning.


Asunto(s)
Sistemas CRISPR-Cas , Mutagénesis Insercional , Plásmidos , Pez Cebra , Mutagénesis Insercional/métodos , Animales , Plásmidos/genética , Pez Cebra/genética , Vectores Genéticos/genética , Edición Génica/métodos , Alelos
2.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569017

RESUMEN

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Asunto(s)
Enfermedades Musculares , Sarcómeros , Animales , Humanos , Calcio/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Sarcómeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Pez Cebra/metabolismo
3.
Hum Mol Genet ; 33(14): 1195-1206, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38621658

RESUMEN

Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas del Choque Térmico HSP40 , Mitocondrias , Chaperonas Moleculares , Debilidad Muscular , Distrofia Muscular de Cinturas , Pez Cebra , Animales , Pez Cebra/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Debilidad Muscular/genética , Debilidad Muscular/patología , Debilidad Muscular/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Autofagia/genética , Proteínas del Tejido Nervioso
4.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496541

RESUMEN

Objective: Interictal epileptiform spikes, high-frequency ripple oscillations, and their co-occurrence (spike ripples) in human scalp or intracranial voltage recordings are well-established epileptic biomarkers. While clinically significant, the neural mechanisms generating these electrographic biomarkers remain unclear. To reduce this knowledge gap, we introduce a novel photothrombotic stroke model in mice that reproduces focal interictal electrographic biomarkers observed in human epilepsy. Methods: We induced a stroke in the motor cortex of C57BL/6 mice unilaterally (N=7) using a photothrombotic procedure previously established in rats. We then implanted intracranial electrodes (2 ipsilateral and 2 contralateral) and obtained intermittent local field potential (LFP) recordings over several weeks in awake, behaving mice. We evaluated the LFP for focal slowing and epileptic biomarkers - spikes, ripples, and spike ripples - using both automated and semi-automated procedures. Results: Delta power (1-4 Hz) was higher in the stroke hemisphere than the non-stroke hemisphere in all mice ( p <0.001). Automated detection procedures indicated that compared to the non-stroke hemisphere, the stroke hemisphere had an increased spike ripple ( p =0.006) and spike rates ( p =0.039), but no change in ripple rate ( p =0.98). Expert validation confirmed the observation of elevated spike ripple rates ( p =0.008) and a trend of elevated spike rate ( p =0.055) in the stroke hemisphere. Interestingly, the validated ripple rate in the stroke hemisphere was higher than the non-stroke hemisphere ( p =0.031), highlighting the difficulty of automatically detecting ripples. Finally, using optimal performance thresholds, automatically detected spike ripples classified the stroke hemisphere with the best accuracy (sensitivity 0.94, specificity 0.94). Significance: Cortical photothrombosis-induced stroke in commonly used C57BL/6 mice produces electrographic biomarkers as observed in human epilepsy. This model represents a new translational cortical epilepsy model with a defined irritative zone, which can be broadly applied in transgenic mice for cell type specific analysis of the cellular and circuit mechanisms of pathologic interictal activity. Key Points: Cortical photothrombosis in mice produces stroke with characteristic intermittent focal delta slowing.Cortical photothrombosis stroke in mice produces the epileptic biomarkers spikes, ripples, and spike ripples.All biomarkers share morphological features with the corresponding human correlate.Spike ripples better lateralize to the lesional cortex than spikes or ripples.This cortical model can be applied in transgenic mice for mechanistic studies.

5.
Front Pharmacol ; 15: 1341472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449810

RESUMEN

Drugs that modulate the GABAA receptor are widely used in clinical practice for both the long-term management of epilepsy and emergency seizure control. In addition to older medications that have well-defined roles for the treatment of epilepsy, recent discoveries into the structure and function of the GABAA receptor have led to the development of newer compounds designed to maximise therapeutic benefit whilst minimising adverse effects, and whose position within the epilepsy pharmacologic armamentarium is still emerging. Drugs that modulate the GABAA receptor will remain a cornerstone of epilepsy management for the foreseeable future and, in this article, we provide an overview of the mechanisms and clinical efficacy of both established and emerging pharmacotherapies.

6.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325327

RESUMEN

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Asunto(s)
Electrocorticografía , Humanos , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Adulto Joven , Adolescente , Electroencefalografía/métodos , Persona de Mediana Edad , Epilepsia/fisiopatología , Epilepsia/cirugía , Niño , Ondas Encefálicas/fisiología , Encéfalo/fisiopatología
8.
Neuromodulation ; 27(3): 422-439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37204360

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE: In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS: Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION: This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedades del Sistema Nervioso , Humanos , Modelos Neurológicos , Simulación por Computador , Electrodos , Encéfalo/fisiología
10.
J Hand Surg Am ; 49(2): 141-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099877

RESUMEN

PURPOSE: Brachial plexus birth injury (BPBI) results in upper extremity (UE) movement limitations. Current assessments of UE function used to inform clinical decision-making only evaluate a limited set of static postures and/or movements and have been criticized for being insensitive to certain meaningful differences in function. Reachable workspace provides a numeric and visual assessment of global UE movement ability by quantifying the regions in space that patients can reach with their hands, and it can be collected using real-time feedback to elicit a best-effort acquisition of function. This study evaluated the ability of a real-time feedback reachable workspace tool to assess UE movement in BPBI. METHODS: Twenty-two children with BPBI participated. Reachable workspace data were collected with three-dimensional motion capture using real-time visual feedback to measure UE reaching ability in all regions surrounding the body. All outer, far-from-body points reached by the hand were recorded and analyzed by region. A two-way, within-subjects analysis of variance was used to assess interlimb differences in percentage workspace reached and median reach distance for each of the six regions. RESULTS: The affected limb had significantly less percentage workspace reached than the unaffected limb for all six regions (mean interlimb differences by region, 5.7%-38.6%). The affected limb had significantly less median reach distance than the unaffected limb for all six regions (mean interlimb differences by region, 3.1%-36.8%). CONCLUSIONS: The workspace approach was capable of detecting UE movement impairments of the BPBI-affected limb. The reported deficits in workspace on the affected limb correspond to common movement impairments in BPBI, such as limitations in shoulder elevation, external rotation, extension, and elbow extension. CLINICAL RELEVANCE: The real-time feedback reachable workspace tool is sufficiently robust for assessing UE movement impairments in children with BPBI.


Asunto(s)
Traumatismos del Nacimiento , Extremidad Superior , Niño , Humanos , Rango del Movimiento Articular , Mano , Movimiento
11.
Methods Mol Biol ; 2750: 19-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38108964

RESUMEN

The CRISPR-Cas9 genome editing system is used to induce mutations in genes of interest resulting in the loss of functional protein. A transgenic zebrafish α1-antitrypsin deficiency (AATD) model displays an unusual phenotype, in that it lacks the hepatic accumulation of the misfolding Z α1-antitrypsin (ZAAT) evident in human and mouse models. Here we describe the application of the CRISPR-Cas9 system to generate mutant zebrafish with defects in key proteostasis networks likely to be involved in the hepatic processing of ZAAT in this model. We describe the targeting of the atf6a and man1b1 genes as examples.


Asunto(s)
Perciformes , Proteostasis , Humanos , Animales , Ratones , Proteostasis/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Pez Cebra/genética , Animales Modificados Genéticamente
12.
Brain Commun ; 5(6): fcad317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046095

RESUMEN

Variants in UBA5 have been reported to cause neurological disease with impaired motor function, developmental delay, intellectual disability and brain pathology as recurrent clinical manifestations. UBA5 encodes a ubiquitin-activating-like enzyme that activates ufmylation, a post-translational ubiquitin-like modification pathway, which has been implicated in neurodevelopment and neuronal survival. The reason behind the variation in severity and clinical manifestations in affected individuals and the signal transduction pathways regulated by ufmylation that compromise the nervous system remains unknown. Zebrafish have emerged as a powerful model to study neurodegenerative disease due to its amenability for in vivo analysis of muscle and neuronal tissues, high-throughput examination of motor function and rapid embryonic development allowing an examination of disease progression. Using clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing, we developed and characterized zebrafish mutant models to investigate disease pathophysiology. uba5 mutant zebrafish showed a significantly impaired motor function accompanied by delayed growth and reduced lifespan, reproducing key phenotypes observed in affected individuals. Our study demonstrates the suitability of zebrafish to study the pathophysiology of UBA5-related disease and as a powerful tool to identify pathways that could reduce disease progression. Furthermore, uba5 mutants exhibited widespread mitochondrial damage in both the nervous system and the skeletal muscle, suggesting that a perturbation of mitochondrial function may contribute to disease pathology.

13.
Neurobiol Lang (Camb) ; 4(1): 53-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229140

RESUMEN

Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency. This paradox demands better understanding of the interactions between the cortical speech network and the STN, which can be investigated with intracranial EEG recordings collected during DBS implantation surgery. We analyzed the propagation of high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor cortices during reading aloud via event-related causality, a method that estimates strengths and directionalities of neural activity propagation. We employed a newly developed bivariate smoothing model based on a two-dimensional moving average, which is optimal for reducing random noise while retaining a sharp step response, to ensure precise embedding of statistical significance in the time-frequency space. Sustained and reciprocal neural interactions between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity propagated from the STG to the STN prior to speech onset. The strength of this influence was affected by the lexical status of the utterance, with increased activity propagation during word versus pseudoword reading. These unique data suggest a potential role for the STN in the feedforward control of speech.

14.
Metabolites ; 13(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36837851

RESUMEN

Inflammation and oxidative stress are strongly implicated in the pathology of Duchenne muscular dystrophy (DMD), and the sulphur-containing amino acid taurine ameliorates both and decreases dystropathology in the mdx mouse model for DMD. We therefore further tested taurine as a therapy using dystrophic DMDmdx rats and dmd zebrafish models for DMD that have a more severe dystropathology. However, taurine treatment had little effect on the indices of dystropathology in both these models. While we and others have previously observed a deficiency in taurine in mdx mice, in the current study we show that the rat and zebrafish models had increased taurine content compared with wild-type, and taurine treatment did not increase muscle taurine levels. We therefore hypothesised that endogenous levels of taurine are a key determinate in potential taurine treatment efficacy. Because of this, we felt it important to measure taurine levels in DMD patient plasma samples and showed that in non-ambulant patients (but not in younger patients) there was a deficiency of taurine. These data suggest that taurine homeostasis varies greatly between species and may be influenced by age and disease progression. The potential for taurine to be an effective therapy may depend on such variables.

15.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768797

RESUMEN

Individuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.


Asunto(s)
Proteómica , Pez Cebra , Animales , Humanos , Animales Modificados Genéticamente , Línea Celular , Colesterol , Hígado , Pez Cebra/genética , alfa 1-Antitripsina/genética
16.
J Chem Educ ; 99(12): 3814-3821, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530179

RESUMEN

This commentary is a call to make the future of chemistry laboratories accessible and inclusive. We draw from research and lived experience to put forward a list of recommendations for laboratory-based teaching. Our authorial team includes undergraduate and postgraduate chemistry students, graduate teaching assistants, teaching-focused and traditional research and teaching academics, and a Diversity Equality Inclusion (DEI/EDI) academic expert. We all have lived experiences of disability, chronic illness, neurodivergence, and other marginalizations related to race, religion, sexuality, or other characteristics. We believe that laboratory-based chemistry learning environments, teaching, assessment, and resources should be accessible to all students and staff.

17.
Foods ; 11(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36553802

RESUMEN

Beef contains an array of conjugated linoleic acid (CLA) isomers for which positive effects have been reported in animal models of human disease. The objectives were to develop a CLA-enriched beef production system and to assess its quality. Sixty Spring-born heifers were housed in Autumn and offered unwilted grass silage and a barley/soyabean concentrate or wilted grass silage and a concentrate containing sunflower oil and fish oil. In May, both groups were offered either pasture for 22 weeks, restricted pasture and sunflower oil and fish oil for 22 weeks, or pasture for 11 weeks and restricted pasture and sunflower oil and fish oil for the final 11 weeks. The predominant CLA isomer in beef was cis9, trans11 representing on average, 80% total CLA. The modified winter diet followed by supplementation for 22 weeks resulted in beef that had a CLA concentration that was higher, at a comparable intramuscular fatty acid concentration, than previously reported. The lipid and colour stability (over 10 days in modified atmosphere packaging) and sensory characteristics were generally not negatively affected. There were minor effects on the expression of candidate genes involved in lipid metabolism. Consumption of this beef would make a substantial contribution to the quantity of CLA suggested to have a positive effect on consumer health.

18.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36016202

RESUMEN

Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.

19.
Elife ; 112022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621994

RESUMEN

Brain signal decoding promises significant advances in the development of clinical brain computer interfaces (BCI). In Parkinson's disease (PD), first bidirectional BCI implants for adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the clinical utility of adaptive DBS but the impact of neural source, computational methods and PD pathophysiology on decoding performance are unknown. This represents an unmet need for the development of future neurotechnology. To address this, we developed an invasive brain-signal decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model architectures. ECoG based decoding performance negatively correlated with motor impairment, which could be attributed to subthalamic beta bursts in the motor preparation and movement period. This highlights the impact of PD pathophysiology on the neural capacity to encode movement vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding performance of individual ECoG channels across patients by using their connectomic fingerprints. Our study provides a neurophysiological and computational framework for invasive brain signal decoding to aid the development of an individualized precision-medicine approach to intelligent adaptive DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Encéfalo , Electrocorticografía , Humanos , Movimiento
20.
J Colloid Interface Sci ; 614: 120-129, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091141

RESUMEN

HYPOTHESIS: Among other functions, mucins hydrate and protect biological interfaces from mechanical challenges. Mucins also attract interest as biocompatible coatings with excellent lubrication performance. Therefore, it is of high interest to understand the structural response of mucin films to mechanical challenges. We hypothesized that this could be done with Neutron Reflectometry using a novel sample environment where mechanical confinement is achieved by inflating a membrane against the films. EXPERIMENTS: Oral MUC5B mucin films were investigated by Force Microscopy/Spectroscopy and Neutron Reflectometry both at solid-liquid interfaces and under mechanical confinement. FINDINGS: NR indicated that MUC5B films were almost completely compressed and dehydrated when confined at 1 bar. This was supported by Force Microscopy/Spectroscopy investigations. Force Spectroscopy also indicated that MUC5B films could withstand mechanical confinement by means of steric interactions for pressures lower than âˆ¼ 0.5 bar i.e., mucins could protect interfaces from mechanical challenges of this magnitude while keeping them hydrated. To investigate mucin films under these pressures by means of the employed sample environment for NR, further technological developments are needed. The most critical would be identifying or developing more flexible membranes that would still meet certain requirements like chemical homogeneity and very low roughness.


Asunto(s)
Mucinas , Neutrones , Microscopía de Fuerza Atómica , Mucinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...