Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742992

RESUMEN

Intrauterine growth restriction (IUGR) is a pregnancy complication impairing fetal growth and development. The compromised development is often attributed to disruptions of oxygen and nutrient supply from the placenta, resulting in a number of unfavourable physiological outcomes with impaired brain and organ growth. IUGR is associated with compromised development of both grey and white matter, predisposing the infant to adverse neurodevelopmental outcomes, including long-lasting cognitive and motor difficulties. Cerebral thyroid hormone (TH) signalling, which plays a crucial role in regulating white and grey matter development, is dysregulated in IUGR, potentially contributing to the neurodevelopmental delays associated with this condition. Notably, one of the major TH transporters, monocarboxylate transporter-8 (MCT8), is deficient in the fetal IUGR brain. Currently, no effective treatment to prevent or reverse IUGR exists. Management strategies involve close antenatal monitoring, management of maternal risk factors if present and early delivery if IUGR is found to be severe or worsening in utero. The overall goal is to determine the most appropriate time for delivery, balancing the risks of preterm birth with further fetal compromise due to IUGR. Drug candidates have shown either adverse effects or little to no benefits in this vulnerable population, urging further preclinical and clinical investigation to establish effective therapies. In this review, we discuss the major neuropathology of IUGR driven by uteroplacental insufficiency and the concomitant long-term neurobehavioural impairments in individuals born IUGR. Importantly, we review the existing clinical and preclinical literature on cerebral TH signalling deficits, particularly the impaired expression of MCT8 and their correlation with IUGR. Lastly, we discuss the current evidence on MCT8-independent TH analogues which mimic the brain actions of THs by being metabolised in a similar manner as promising, albeit underappreciated approaches to promote grey and white matter development and improve the neurobehavioural outcomes following IUGR.

2.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364032

RESUMEN

Human transthyretin (hTTR) can form amyloid deposits that accumulate in nerves and organs, disrupting cellular function. Molecules such as tafamidis that bind to and stabilize the TTR tetramer can reduce such amyloid formation. Here, we studied the interaction of VCP-6 (2-((3,5-dichlorophenyl)amino)benzoic acid) with hTTR. VCP-6 binds to hTTR with 5 times the affinity of the cognate ligand, thyroxine (T4). The structure of the hTTR:VCP-6 complex was determined by X-ray crystallography at 1.52 Šresolution. VCP-6 binds deeper in the binding channel than T4 with the 3',5'-dichlorophenyl ring binding in the 'forward' mode towards the channel centre. The dichlorophenyl ring lies along the 2-fold axis coincident with the channel centre, while the 2-carboxylatephenylamine ring of VCP-6 is symmetrically displaced from the 2-fold axis, allowing the 2-carboxylate group to form a tight intermolecular hydrogen bond with Nζ of Lys15 and an intramolecular hydrogen bond with the amine of VCP-6, stabilizing its conformation and explaining the greater affinity of VCP-6 compared to T4. This arrangement maintains optimal halogen bonding interactions in the binding sites, via chlorine atoms rather than iodine of the thyroid hormone, thereby explaining why the dichloro substitution pattern is a stronger binder than either the diiodo or dibromo analogues.


Asunto(s)
Amiloidosis , Prealbúmina , Humanos , Prealbúmina/metabolismo , Conformación Proteica , Modelos Moleculares , Sitios de Unión , Cristalografía por Rayos X , Amiloide , Proteínas Amiloidogénicas , Halógenos
3.
Neurosci Lett ; 766: 136287, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634393

RESUMEN

Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.


Asunto(s)
Cuerpo Calloso , Enfermedades Desmielinizantes/metabolismo , Prealbúmina/deficiencia , Remielinización/fisiología , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Foods ; 10(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34829143

RESUMEN

Red pitaya (Hylocereus polyrhizus, red pulp with pink peel), also known as dragon fruit, is a well-known species of pitaya fruit. Pitaya seeds and peels have been reported to exhibit higher concentrations of total polyphenols, beta-cyanins and amino acid than pulp, while anthocyanins (i.e., cyanidin 3-glucoside, delphinidin 3-glucoside and pelargonidin 3-glucoside) were only detected in the pulp extracts. Beta-cyanins, phenolics and flavonoids were found to increase gradually during fruit maturation and pigmentation appeared earlier in the pulp than peel. The phytochemicals were extracted and purified by various techniques and broadly used as natural, low-cost, and beneficial healthy compounds in foods, including bakery, wine, dairy, meat and confectionery products. These bioactive components also exhibit regulative influences on the human gut microbiota, glycaemic response, lipid accumulation, inflammation, growth of microbials and mutagenicity, but the mechanisms are yet to be understood. The objective of this study was to systematically summarise the effect of red pitaya's maturation process on the nutritional profile and techno-functionality in a variety of food products. The findings of this review provide valuable suggestions for the red pitaya fruit processing industry, leading to novel formulations supported by molecular research.

5.
Front Vet Sci ; 8: 637614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796580

RESUMEN

Osteosarcoma (OS) is the most common primary bone tumor and originates from bone forming mesenchymal cells and primarily affects children and adolescents. The 5-year survival rate for OS is 60 to 65%, with little improvement in prognosis during the last four decades. Studies have demonstrated the evolving roles of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation, bone remodeling, regulation of calcium transport from blood to milk, regulation of maternal calcium transport to the fetus and reabsorption of calcium in kidneys. These two molecules also play critical roles in the development, progression and metastasis of several tumors such as breast cancer, lung carcinoma, chondrosarcoma, squamous cell carcinoma, melanoma and OS. The protein expression of both PTHrP and PTHR1 have been demonstrated in OS, and their functions and proposed signaling pathways have been investigated yet their roles in OS have not been fully elucidated. This review aims to discuss the latest research with PTHrP and PTHR1 in OS tumorigenesis and possible mechanistic pathways. This review is dedicated to Professor Michael Day who died in May 2020 and was a very generous collaborator.

6.
Front Neuroendocrinol ; 61: 100901, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33493504

RESUMEN

Thyroid hormones (THs) are instrumental in promoting the molecular mechanisms which underlie the complex nature of neural development and function within the central nervous system (CNS) in vertebrates. The key neurodevelopmental process of myelination is conserved between humans and rodents, of which both experience peak fetal TH concentrations concomitant with onset of myelination. The importance of supplying adequate levels of THs to the myelin producing cells, the oligodendrocytes, for promoting their maturation is crucial for proper neural function. In this review we examine the key TH distributor and transport proteins, including transthyretin (TTR) and monocarboxylate transporter 8 (MCT8), essential for supporting proper oligodendrocyte and myelin health; and discuss disorders with impaired TH signalling in relation to abnormal CNS myelination in humans and rodents. Furthermore, we explore the importance of using novel TH analogues in the treatment of myelination disorders associated with abnormal TH signalling.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Roedores , Animales , Sistema Nervioso Central , Humanos , Neurogénesis , Hormonas Tiroideas
7.
Sci Rep ; 10(1): 4189, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144308

RESUMEN

Transthyretin (TTR) is a protein that binds and distributes thyroid hormones (THs) in blood and cerebrospinal fluid. Previously, two reports identified TTR null mice as hypothyroid in the central nervous system (CNS). This prompted our investigations into developmentally regulated TH-dependent processes in brains of wildtype and TTR null mice. Despite logical expectations of a hypomyelinating phenotype in the CNS of TTR null mice, we observed a hypermyelination phenotype, synchronous with an increase in the density of oligodendrocytes in the corpus callosum and anterior commissure of TTR null mice during postnatal development. Furthermore, absence of TTR enhanced proliferation and migration of OPCs with decreased apoptosis. Neural stem cells (NSCs) isolated from the subventricular zone of TTR null mice at P21 revealed that the absence of TTR promoted NSC differentiation toward a glial lineage. Importantly, we identified TTR synthesis in OPCs, suggestive of an alternate biological function in these cells that may extend beyond an extracellular TH-distributor protein. The hypermyelination mechanism may involve increased pAKT (involved in oligodendrocyte maturation) in TTR null mice. Elucidating the regulatory role of TTR in NSC and OPC biology could lead to potential therapeutic strategies for the treatment of acquired demyelinating diseases.


Asunto(s)
Oligodendroglía/citología , Oligodendroglía/metabolismo , Prealbúmina/líquido cefalorraquídeo , Células Madre/citología , Células Madre/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Hormonas Tiroideas/sangre , Hormonas Tiroideas/líquido cefalorraquídeo , Hormonas Tiroideas/metabolismo
8.
Sci Rep ; 10(1): 1564, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005896

RESUMEN

Osteosarcoma (OS) is the most common malignant primary bone tumour in humans and dogs. Several studies have established the vital role of parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) in bone formation and remodeling. In addition, these molecules play a role in the progression and metastasis of many human tumour types. This study investigated the expression of PTHR1 and PTHrP in canine OS tissues and assessed their prognostic value. Formalin-fixed, paraffin-embedded tissue samples from 50 dogs diagnosed with primary OS were immunolabeled with antibodies specific for PTHR1 and PTHrP. The immunostaining intensity of tumours from patients with OS was correlated with survival time. Both PTHR1 and PTHrP were detected in all OS samples (n = 50). Dogs with OS tumours showing high immunostaining intensity for PTHR1 (n = 36) had significantly shorter survival times (p = 0.028, Log Rank; p = 0.04, Cox regression) when compared with OS that had low immunostaining intensity for PTHR1 (n = 14).PTHrP immunostaining intensity did not correlate with survival time (p > 0.05). The results of this study indicate that increased expression of PTHR1 antigen in canine OS is associated with poor prognosis. This suggests that PTHR1 may be useful as a prognostic indicator in canine OS.


Asunto(s)
Neoplasias Óseas/veterinaria , Enfermedades de los Perros/diagnóstico , Osteosarcoma/veterinaria , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Animales , Neoplasias Óseas/inducido químicamente , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/mortalidad , Enfermedades de los Perros/mortalidad , Perros , Femenino , Masculino , Osteosarcoma/química , Osteosarcoma/diagnóstico , Osteosarcoma/mortalidad , Adhesión en Parafina/veterinaria , Pronóstico , Receptor de Hormona Paratiroídea Tipo 1/análisis
9.
Sci Rep ; 9(1): 19689, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873158

RESUMEN

Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.


Asunto(s)
Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Prealbúmina/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Femenino , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Neurogénesis , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Prealbúmina/deficiencia , Prealbúmina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales , Hormonas Tiroideas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-31440205

RESUMEN

Thyroid hormones (THs) are ancient hormones that not only influence the growth, development and metabolism of vertebrates but also affect the metabolism of (at least some) bacteria. Synthesized in the thyroid gland (or follicular cells in fish not having a discrete thyroid gland), THs can act on target cells by genomic or non-genomic mechanisms. Either way, THs need to get from their site of synthesis to their target cells throughout the body. Despite being amphipathic in structure, THs are lipophilic and hence do not freely diffuse in the aqueous environments of blood or cerebrospinal fluid (in contrast to hydrophilic hormones). TH Distributor Proteins (THDPs) have evolved to enable the efficient distribution of THs in the blood and cerebrospinal fluid. In humans, the THDPs are albumin, transthyretin (TTR), and thyroxine-binding globulin (TBG). These three proteins have distinct patterns of regulation in both ontogeny and phylogeny. During development, an additional THDP with higher affinity than those in the adult, is present during the stage of peak TH concentrations in blood. Although TTR is the only THDP synthesized in the central nervous system (CNS), all THDPs from blood are present in the CSF (for each species). However, the ratio of albumin to TTR differs in the CSF compared to the blood. Humans lacking albumin or TBG have been reported and can be asymptomatic, however a human lacking TTR has not been documented. Conversely, there are many diseases either caused by TTR or that have altered levels of TTR in the blood or CSF associated with them. The first world-wide RNAi therapy has just been approved for TTR amyloidosis.

11.
J Mammary Gland Biol Neoplasia ; 24(2): 125-137, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30488318

RESUMEN

Mixed tumors are characterized by the histological identification of two or more cell types. Commonly, a mixture of epithelial and myoepithelial cells is included in abundant stroma, which can consist of myxoid, chondroid or bony matrices. Spontaneously arising mixed tumors are rare lesions in the human breast but are common in human salivary glands and canine mammary glands. Subtle histopathological characteristics and overlapping attributes of malignant lesions with other benign lesions can lead to a diagnostic challenge. Mixed tumors can present as benign or malignant. While malignant mixed tumors are quite rare in the human breast they have a poor prognosis. Benign mixed mammary tumors occur more frequently in female dogs than in humans and are usually associated with a good prognosis. This review will provide a comprehensive overview of mixed mammary tumors, across various mammalian species.


Asunto(s)
Neoplasias de la Mama/epidemiología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/patología , Neoplasias Mamarias Animales/epidemiología , Neoplasias Complejas y Mixtas/epidemiología , Enfermedades Raras/epidemiología , Animales , Neoplasias de la Mama/patología , Células Epiteliales/patología , Femenino , Humanos , Neoplasias Mamarias Animales/patología , Neoplasias Complejas y Mixtas/patología , Neoplasias Complejas y Mixtas/veterinaria , Pronóstico , Enfermedades Raras/patología , Especificidad de la Especie
12.
Gen Comp Endocrinol ; 264: 131-137, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28919452

RESUMEN

Normal development of the brain is dependent on the required amounts of thyroid hormones (THs) reaching specific regions of the brain during each stage of ontogeny. Many proteins are involved with regulation of TH bioavailability in the brain: the TH distributor protein transthyretin (TTR), TH transmembrane transporters (e.g. MCT8, MCT10, LAT1, OATP1C1) and deiodinases (D1, D2 and D3) which either activate or inactivate THs. Previous studies revealed that in mammals, T4, but not T3, accumulated in the choroid plexus and then entered the cerebrospinal fluid. In all mammalian species studied so far, TTR binds T4 with higher affinity than T3, whereas TTR in non-mammalian vertebrates binds T3 with higher affinity than T4. We investigated if the form of TH preferentially bound by TTR influenced the form of the TH that accumulated in the choroid plexus and consequently other areas of the brain. We measured the mRNA levels corresponding to TTR, MCT8, MCT10, LAT1, OATP1C1, D1, D2 and D3 in the brains of chickens at 11days post-hatching. TTR, D3 and OATP1C1 expression were found to be highly concentrated in the choroid plexus. D1, MCT8 and MCT10 mRNA levels were slightly greater in the choroid plexus than in other areas of the brain while D2 mRNA levels were lower. LAT1 mRNA was evenly expressed throughout the brain. Therefore, the choroid plexus appears to be a structure which exhibits sophisticated control of TH levels within the brain. We also measured the uptake of intravenously injected 125I-T3 and 125I-T4 into brains of chickens of the same age. 125I-T4 but not 125I-T3 accumulated in the choroid plexus and optic lobes. Therefore, the form of TH preferentially bound by TTR does not determine the form of TH that accumulates in the choroid plexus and other areas of the brain. As for mammals, T3 present in the avian brain therefore seems mainly produced locally by conversion of T4 into T3 by D2.


Asunto(s)
Plexo Coroideo/metabolismo , Prealbúmina/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Animales , Encéfalo/metabolismo , Pollos/metabolismo , Yoduro Peroxidasa/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones Endogámicos BALB C , ARN Mensajero/metabolismo , Ratas , Hormonas Tiroideas/metabolismo , Tiroxina/sangre , Distribución Tisular , Triyodotironina/sangre
13.
Mol Cell Endocrinol ; 459: 43-52, 2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28249735

RESUMEN

Thyroid hormones (THs) are evolutionarily old hormones, having effects on metabolism in bacteria, invertebrates and vertebrates. THs bind specific distributor proteins (THDPs) to ensure their efficient distribution through the blood and cerebrospinal fluid in vertebrates. Albumin is a THDP in the blood of all studied species of vertebrates, so may be the original vertebrate THDP. However, albumin has weak affinity for THs. Transthyretin (TTR) has been identified in the blood across different lineages in adults vs juveniles. TTR has intermediate affinity for THs. Thyroxine-binding globulin has only been identified in mammals and has high affinity for THs. Of these THDPs, TTR is the only one known to be synthesised in the brain and is involved in moving THs from the blood into the cerebrospinal fluid. We analysed the rates of evolution of these three THDPs: TTR has been most highly conserved and albumin has had the highest rate of divergence.


Asunto(s)
Albúminas/química , Evolución Molecular , Prealbúmina/química , Hormonas Tiroideas/metabolismo , Globulina de Unión a Tiroxina/química , Albúminas/genética , Albúminas/metabolismo , Animales , Secuencia Conservada , Expresión Génica , Humanos , Modelos Moleculares , Filogenia , Prealbúmina/genética , Prealbúmina/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Selección Genética , Hormonas Tiroideas/genética , Globulina de Unión a Tiroxina/genética , Globulina de Unión a Tiroxina/metabolismo
14.
Bioanalysis ; 9(4): 359-368, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28074669

RESUMEN

AIM: Increasing numbers of compounds requiring stability data means highly optimized methods capable of rapid turnaround are desirable during early discovery. Materials and methods/results: An advanced, generic analytical workflow for metabolic stability has been developed that utilizing ballistic gradient LC (sub 1 min run times), exact mass TOF-MS (Waters Xevo-G2-XS Q-TOF) and automated data processing (Waters UNIFI software) allowed for rapid integration and interpretation of all data produced, eliminating the need for method development and manual processing. We can analyze and process 96 compounds across two species in quadruplicate in a 24-h period with no method development. CONCLUSION: An advanced bioanalytical workflow has increased our capacity threefold and reduced our instrument/processing needs threefold.


Asunto(s)
Química Farmacéutica/métodos , Espectrometría de Masas/métodos , Animales , Cromatografía Líquida de Alta Presión , Descubrimiento de Drogas , Procesamiento Automatizado de Datos , Humanos , Hígado/metabolismo , Peso Molecular , Ratas , Reproducibilidad de los Resultados , Programas Informáticos , Espectrometría de Masas en Tándem , Tecnología Farmacéutica , Flujo de Trabajo
15.
Gen Comp Endocrinol ; 244: 1, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27998717
16.
Drug Metab Lett ; 10(2): 83-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26902079

RESUMEN

BACKGROUND: A rapid and comprehensive metabolic stability screen at the top of a drug discovery flow chart serves as an effective gate in eliminating low value compounds. This imparts a significant level of efficiency and saves valuable resources. While microsomes are amenable to high throughput automation and are cost effective, their enzymatic make-up is limited to that which is contained in endoplasmic reticulum, thereby informing only on Phase I metabolism. Lack of Phase II metabolism data can become a potential liability later in the process, adversely affecting discovery projects' timelines and budget. Hepatocytes offer a full complement of metabolic enzymes and retain their cellular compartments, better representing liver metabolic function. However, hepatocyte screens are relatively expensive, labor intensive, and not easily automatable. Liver S9 fractions include Phase I and II metabolic enzymes, are relatively inexpensive, easy to use, and amenable to automation, making them a more appropriate screening system. We compare the data from the three systems and present the results. RESULTS: Liver S9 and hepatocyte stability assays binned into the same category 70-84% of the time. Microsome and hepatocyte data were in agreement 73-82% of the time. The true rate for stability versus plasma clearance was 45% for hepatocytes and 43% for S9. CONCLUSION: In our opinion, replacing liver microsome and hepatocyte assays with S9 assay for high throughput metabolic screening purposes provides the combined benefit of comprehensive and high quality data at a reasonable expense for drug discovery programs.


Asunto(s)
Descubrimiento de Drogas/métodos , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Células CACO-2 , Femenino , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
17.
Biopreserv Biobank ; 13(4): 247-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26186583

RESUMEN

Canine tumors are valuable comparative oncology models. This research was designed to create a sustainable biobank of canine mammary tumors for breast cancer research. The aim was to provide a well-characterized sample cohort for specimen sharing, data mining, and long-term research aims. Canine mammary tumors are most frequently managed at a local veterinary clinic or hospital. We adopted a biobank framework based on a large number of participating veterinary hospitals and clinics acting as collection centers that were serviced by a centralized storage facility. Recruitment was targeted at rural veterinary clinics. A tailored, stable collection kit (DogMATIC) was designed that was used by veterinarians in remote or rural locations to collect both fresh and fixed tissue for submission to the biobank. To validate this methodology the kit design, collection rate, and sample quality were analyzed. The Australian Veterinary Cancer Biobank was established as a network of 47 veterinary clinics and three veterinary pathology laboratories spanning over 200,000 km(2). In the first 12 months, 30 canine mammary tumor cases were submitted via the DogMATIC kit. Pure intact RNA was isolated in over 80% of samples with an average yield of 14.49 µg. A large network biobank, utilizing off-site collection with the DogMATIC kit, was successfully coordinated. The creation of the Australian Veterinary Cancer Biobank has established a long-term, sustainable, comparative oncology research resource in Australia. There are broader implications for biobanking with this very different form of collection and banking.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias/patología , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos , Bancos de Tejidos , Animales , Modelos Animales de Enfermedad , Perros , Femenino , Masculino , Proyectos Piloto , Calidad de la Atención de Salud , ARN/análisis , Población Rural , Medicina Veterinaria , Victoria
18.
J Med Chem ; 58(13): 5323-33, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26083478

RESUMEN

We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K. The improved PK properties of this series allowed for exploration of in vivo efficacy and ultimately the selection of CC-223 for clinical development.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Neoplasias de la Próstata/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Humanos , Masculino , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Pirazinas/síntesis química , Ratas , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
J Med Chem ; 58(14): 5599-608, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26102506

RESUMEN

We report here the synthesis and structure-activity relationship (SAR) of a novel series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors. SAR studies examining the potency, selectivity, and PK parameters for a series of triazole containing 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones resulted in the identification of triazole containing mTOR kinase inhibitors with improved PK properties. Potent compounds from this series were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC-3 cancer cells, in vitro and in vivo. When assessed in efficacy models, analogs exhibited dose-dependent efficacy in tumor xenograft models. This work resulted in the selection of CC-115 for clinical development.


Asunto(s)
Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/química , Pirazinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Triazoles/química , Triazoles/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazinas/metabolismo , Pirazinas/farmacocinética , Ratas , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Triazoles/metabolismo , Triazoles/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Front Neurosci ; 9: 16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25729345

RESUMEN

In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by "strap" junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, ß - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...