Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
2.
Front Cardiovasc Med ; 10: 1198020, 2023.
Article En | MEDLINE | ID: mdl-37583583

Background: Bioprosthetic heart valves (BHVs) are less thrombogenic than mechanical prostheses; however, BHV thrombosis has been proposed as a risk factor for premature BHV degeneration. Objectives: We aimed to explore whether fibrin deposition on bovine pericardium tissue could lead to calcification. Method: Fibrin clot was obtained by blending three reagents, namely, CRYOcheck™ Pooled Normal Plasma (4/6), tissue factor + phospholipids (Thrombinoscope BV), and 100 mM calcium (1/6), and deposited on pericardium discs. Non-treated and fibrin-treated bovine pericardium discs were inserted into the subcutaneous tissue of 12-day-old Wistar rats and sequentially explanted on days 5, 10, and 15. Calcium content was measured with acetylene flame atomic absorption spectrophotometry. Histological analysis was performed using hematoxylin-eosin staining, Von Kossa staining, and immunohistochemistry. Results: Calcification levels were significantly higher in fibrin-treated bovine pericardium discs compared to those in non-treated bovine pericardium discs (27.45 ± 23.05 µg/mg vs. 6.34 ± 6.03 µg/mg on day 5, 64.34 ± 27.12 µg/mg vs. 34.21 ± 19.11 µg/mg on day 10, and 64.34 ± 27.12 µg/mg vs. 35.65 ± 17.84 µg/mg on day 15; p < 0.001). Von Kossa staining confirmed this finding. In hematoxylin-eosin staining, the bovine pericardium discs were more extensively and deeply colonized by inflammatory-like cells, particularly T lymphocytes (CD3+ cells), when pretreated with fibrin. Conclusion: Fibrin deposition on bovine pericardium tissue treated with glutaraldehyde, used for BHV, led to increased calcification in a rat model. BHV thrombosis could be one of the triggers for calcification and BHV deterioration.

4.
Arterioscler Thromb Vasc Biol ; 42(4): 470-480, 2022 04.
Article En | MEDLINE | ID: mdl-35139659

BACKGROUND: Carmat bioprosthetic total artificial heart (Aeson; A-TAH) is a pulsatile and autoregulated device. The aim of this study is to evaluate level of hemolysis potential acquired von Willebrand syndrome after A-TAH implantation. METHODS: We examined the presence of hemolysis and acquired von Willebrand syndrome in adult patients receiving A-TAH support (n=10) during their whole clinical follow-up in comparison with control subjects and adult patients receiving Heartmate II or Heartmate III support. We also performed a fluid structure interaction model coupled with computational fluid dynamics simulation to evaluate the A-TAH resulting shear stress and its distribution in the blood volume. RESULTS: The cumulative duration of A-TAH support was 2087 days. A-TAH implantation did not affect plasma free hemoglobin over time, and there was no association between plasma free hemoglobin and cardiac output or beat rate. For VWF (von Willebrand factor) evaluation, A-TAH implantation did not modify multimers profile of VWF in contrast to Heartmate II and Heartmate III. Furthermore, fluid structure interaction coupled with computational fluid dynamics showed a gradually increase of blood damage according to increase of cardiac output (P<0.01), however, the blood volume fraction that endured significant shear stresses was always inferior to 0.03% of the volume for both ventricles in all regimens tested. An inverse association between cardiac output, beat rate, and high-molecular weight multimers ratio was found. CONCLUSIONS: We demonstrated that A-TAH does not cause hemolysis or AWVS. However, relationship between HMWM and cardiac output depending flow confirms relevance of VWF as a biological sensor of blood flow, even in normal range.


Heart, Artificial , von Willebrand Diseases , Adult , Heart, Artificial/adverse effects , Hemoglobins , Hemolysis , Humans , von Willebrand Factor
5.
Heliyon ; 5(12): e02914, 2019 Dec.
Article En | MEDLINE | ID: mdl-31867454

The Carmat bioprosthetic total artificial heart (C-TAH) is a biventricular pump developed to minimize drawbacks of current mechanical assist devices and improve quality of life during support. This study aims to evaluate the safety of the hybrid membrane, which plays a pivotal role in this artificial heart. We investigated in particular its blood-contacting surface layer of bovine pericardial tissue, in terms of mechanical aging, risks of calcification, and impact of the hemodynamics shear stress inside the ventricles on blood components. Hybrid membranes were aged in a custom-designed endurance bench. Mechanical, physical and chemical properties were not significantly modified from 9 months up to 4 years of aging using a simulating process. Exploration of erosion areas did not show no risk of oil diffusion through the membrane. Blood contacting materials in the ventricular cavities were subcutaneously implanted in Wistar rats for 30 days as a model for calcification and demonstrated that the in-house anti-calcification pretreatment with Formaldehyde-Ethanol-Tween 80 was able to significantly reduce the calcium concentration from 132 µg/mg to 4.42 µg/mg (p < 0.001). Hemodynamic simulations with a computational model were used to reproduce shear stress in left and right ventricles and no significant stress was able to trigger hemolysis, platelet activation nor degradation of the von Willebrand factor multimers. Moreover, explanted hybrid membranes from patients included in the feasibility clinical study were analyzed confirming preclinical results with the absence of significant membrane calcification. At last, blood plasma bank analysis from the four patients implanted with C-TAH during the feasibility study showed no residual glutaraldehyde increase in plasma and confirmed hemodynamic simulation-based results with the absence of hemolysis and platelet activation associated with normal levels of plasma free hemoglobin and platelet microparticles after C-TAH implantation. These results on mechanical aging, calcification model and hemodynamic simulations predicted the safety of the hybrid membrane used in the C-TAH, and were confirmed in the feasibility study.

...