Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 34(21-22): 1493-1502, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33033055

RESUMEN

Catalytic-inactivating mutations within the Drosophila enhancer H3K4 mono-methyltransferase Trr and its mammalian homologs, MLL3/4, cause only minor changes in gene expression compared with whole-gene deletions for these COMPASS members. To identify essential histone methyltransferase-independent functions of Trr, we screened to identify a minimal Trr domain sufficient to rescue Trr-null lethality and demonstrate that this domain binds and stabilizes Utx in vivo. Using the homologous MLL3/MLL4 human sequences, we mapped a short ∼80-amino-acid UTX stabilization domain (USD) that promotes UTX stability in the absence of the rest of MLL3/4. Nuclear UTX stability is enhanced when the USD is fused with the MLL4 HMG-box. Thus, COMPASS-dependent UTX stabilization is an essential noncatalytic function of Trr/MLL3/MLL4, suggesting that stabilizing UTX could be a therapeutic strategy for cancers with MLL3/4 loss-of-function mutations.


Asunto(s)
Secuencia Conservada/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes Letales/genética , N-Metiltransferasa de Histona-Lisina/genética , Oxidorreductasas N-Desmetilantes/genética , Animales , Eliminación de Gen , Regulación de la Expresión Génica/genética , Células HCT116 , Humanos , Dominios Proteicos , Estabilidad Proteica
2.
Sci Adv ; 5(7): eaax2887, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31281901

RESUMEN

Using biochemical characterization of fusion proteins associated with endometrial stromal sarcoma, we identified JAZF1 as a new subunit of the NuA4 acetyltransferase complex and CXORF67 as a subunit of the Polycomb Repressive Complex 2 (PRC2). Since CXORF67's interaction with PRC2 leads to decreased PRC2-dependent H3K27me2/3 deposition, we propose a new name for this gene: CATACOMB (catalytic antagonist of Polycomb; official gene name: EZHIP ). We map CATACOMB's inhibitory function to a short highly conserved region and identify a single methionine residue essential for diminution of H3K27me2/3 levels. Remarkably, the amino acid sequence surrounding this critical methionine resembles the oncogenic histone H3 Lys27-to-methionine (H3K27M) mutation found in high-grade pediatric gliomas. As CATACOMB expression is regulated through DNA methylation/demethylation, we propose CATACOMB as the potential interlocutor between DNA methylation and PRC2 activity. We raise the possibility that similar regulatory mechanisms could exist for other methyltransferase complexes such as Trithorax/COMPASS.


Asunto(s)
Glioma/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Oncogénicas/biosíntesis , Complejo Represivo Polycomb 2/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Metilación de ADN , ADN de Neoplasias , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Células HCT116 , Histonas/genética , Humanos , Metilación , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Complejo Represivo Polycomb 2/genética
3.
Trends Cell Biol ; 28(8): 608-630, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29759817

RESUMEN

Enhancers are distally located genomic cis-regulatory elements that integrate spatiotemporal cues to coordinate gene expression in a tissue-specific manner during metazoan development. Enhancer function depends on a combination of bound transcription factors and cofactors that regulate local chromatin structure, as well as on the topological interactions that are necessary for their activity. Numerous genome-wide studies concur that the vast majority of disease-associated variations occur within non-coding genomic sequences, in other words the 'cis-regulome', and this underscores their relevance for human health. Advances in DNA sequencing and genome-editing technologies have dramatically expanded our ability to identify enhancers and investigate their properties in vivo, revealing an extraordinary level of interconnectivity underlying cis-regulatory networks. We discuss here these recently developed methodologies, as well as emerging trends and remaining questions in the field of enhancer biology, and how perturbation of enhancer activities/functions results in enhanceropathies.


Asunto(s)
Enfermedad/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/metabolismo , Animales , Humanos , Transcripción Genética/genética
4.
Genes Dev ; 31(19): 2003-2014, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089422

RESUMEN

Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.


Asunto(s)
Drosophila melanogaster/genética , Regulación de la Expresión Génica , Histonas/metabolismo , Dominio Tudor , Acetilación , Animales , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Técnicas de Inactivación de Genes , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Ratones , Regiones Promotoras Genéticas , Unión Proteica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Genet ; 49(11): 1647-1653, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28967912

RESUMEN

Histone H3 lysine 4 monomethylation (H3K4me1) is an evolutionarily conserved feature of enhancer chromatin catalyzed by the COMPASS-like methyltransferase family, which includes Trr in Drosophila melanogaster and MLL3 (encoded by KMT2C) and MLL4 (encoded by KMT2D) in mammals. Here we demonstrate that Drosophila embryos expressing catalytically deficient Trr eclose and develop to productive adulthood. Parallel experiments with a trr allele that augments enzyme product specificity show that conversion of H3K4me1 at enhancers to H3K4me2 and H3K4me3 is also compatible with life and results in minimal changes in gene expression. Similarly, loss of the catalytic SET domains of MLL3 and MLL4 in mouse embryonic stem cells (mESCs) does not disrupt self-renewal. Drosophila embryos with trr alleles encoding catalytic mutants manifest subtle developmental abnormalities when subjected to temperature stress or altered cohesin levels. Collectively, our findings suggest that animal development can occur in the context of Trr or mammalian COMPASS-like proteins deficient in H3K4 monomethylation activity and point to a possible role for H3K4me1 on cis-regulatory elements in specific settings to fine-tune transcriptional regulation in response to environmental stress.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Sistemas CRISPR-Cas , Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Metilación , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera
6.
PLoS Genet ; 12(9): e1006331, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27662615

RESUMEN

The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.

7.
Mol Cell ; 63(2): 318-328, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27447986

RESUMEN

Polycomb response elements (PREs) are specific DNA sequences that stably maintain the developmental pattern of gene expression. Drosophila PREs are well characterized, whereas the existence of PREs in mammals remains debated. Accumulating evidence supports a model in which CpG islands recruit Polycomb group (PcG) complexes; however, which subset of CGIs is selected to serve as PREs is unclear. Trithorax (Trx) positively regulates gene expression in Drosophila and co-occupies PREs to antagonize Polycomb-dependent silencing. Here we demonstrate that Trx-dependent H3K4 dimethylation (H3K4me2) marks Drosophila PREs and maintains the developmental expression pattern of nearby genes. Similarly, the mammalian Trx homolog, MLL1, deposits H3K4me2 at CpG-dense regions that could serve as PREs. In the absence of MLL1 and H3K4me2, H3K27me3 levels, a mark of Polycomb repressive complex 2 (PRC2), increase at these loci. By inhibiting PRC2-dependent H3K27me3 in the absence of MLL1, we can rescue expression of these loci, demonstrating a functional balance between MLL1 and PRC2 activities at these sites. Thus, our study provides rules for identifying cell-type-specific functional mammalian PREs within the human genome.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Neoplasias Colorrectales/genética , Islas de CpG , Metilación de ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Elementos de Respuesta , Animales , Proteínas Cromosómicas no Histona/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Células HCT116 , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Interferencia de ARN , Especificidad de la Especie , Transcripción Genética , Transfección
8.
Mol Cell ; 60(3): 435-45, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26527278

RESUMEN

Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.


Asunto(s)
ADN Polimerasa II/metabolismo , Mitosis/fisiología , Factor B de Elongación Transcripcional Positiva/metabolismo , Elongación de la Transcripción Genética/fisiología , Activación Transcripcional/fisiología , Células HEK293 , Células HeLa , Humanos
9.
Cell ; 162(5): 1003-15, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26279188

RESUMEN

The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.


Asunto(s)
Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Humanos , Fosforilación , Interferencia de ARN , Factores de Transcripción , Ubiquitinación
10.
Science ; 345(6200): 1065-70, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25170156

RESUMEN

Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.


Asunto(s)
Cromatina/metabolismo , Histonas/genética , Lisina/genética , Metionina/genética , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Silenciador del Gen , Glioma/genética , Glioma/metabolismo , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Mutación , Transducción de Señal
11.
PLoS One ; 8(11): e81331, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24236213

RESUMEN

Though operationally defined as cis-regulatory elements, enhancers can also communicate with promoters on a separate homolog in trans, a mechanism that has been suggested to account for the ability of certain alleles of the same gene to complement one another in a process otherwise known as transvection. This homolog-pairing dependent process is facilitated in Drosophila by chromatin-associated pairing proteins, many of which remain unknown and their mechanism of action uncharacterized. Here we have tested the role of the gypsy chromatin insulator in facilitating pairing and communication between enhancers and promoters in trans using a transgenic eGFP reporter system engineered to allow for targeted deletions in the vestigial Boundary Enhancer (vgBE) and the hsp70 minimal promoter, along with one or two flanking gypsy elements. We found a modest 2.5-3x increase in eGFP reporter levels from homozygotes carrying an intact copy of the reporter on each homolog compared to unpaired hemizygotes, although this behavior was independent of gypsy. However, detectable levels of GFP protein along the DV wing boundary in trans-heterozygotes lacking a single enhancer and promoter was only observed in the presence of two flanking gypsy elements. Our results demonstrate that gypsy can stimulate enhancer-promoter communication in trans throughout the genome in a context-dependent manner, likely through modulation of local chromatin dynamics once pairing has been established by other elements and highlights chromatin structure as the master regulator of this phenomenon.


Asunto(s)
Cromatina/genética , Proteínas de Drosophila/genética , Drosophila/genética , Elementos de Facilitación Genéticos , Elementos Aisladores , Proteínas Nucleares/genética , Animales , Animales Modificados Genéticamente , Cromatina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Orden Génico , Genes Reporteros , Masculino , Mutación , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas
12.
Cell ; 154(3): 477-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911314

RESUMEN

Little is known about the molecular machinery that contributes to site-specific copy number variations or how CNVs fit into the chronology of tumor progression. Black et al. (2013) now demonstrate that the overexpression of a histone demethylase induces transient copy gain of specific genomic loci known to harbor proto-oncogenes.


Asunto(s)
Replicación del ADN , Dosificación de Gen , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias/genética , Humanos
13.
J Cell Biol ; 202(2): 261-76, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23878275

RESUMEN

Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol-p38 mitogen-activated protein kinase-independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Elementos Aisladores , Ósmosis , Animales , Muerte Celular , Línea Celular , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Cromatina/genética , Medios de Cultivo/metabolismo , Drosophila/efectos de los fármacos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicerol/farmacología , Larva/genética , Larva/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Concentración Osmolar , Cloruro de Sodio/farmacología , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...