Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Chembiochem ; : e202400137, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38591336

The biocatalyzed oxidative detoxification of the V-series simulant PhX, by mean of the microperoxidase AcMP11, affords the corresponding phosphonothioate as the prominent product instead of the classical P-S and P-O bond cleavage. While PhX is structurally very close to the live agent VX (the methyl group is replaced by a phenyl), assessment with other surrogates missing the nucleophilic amino function displayed more resistance under the same conditions with no phosphonothioate observed. These encouraging results highlight 1) the efficacy of AcMP11 microperoxidase to efficiently detoxify V-series organophosphorus nerve agents (OPNA), and 2) the necessity to use representative alkyl or aryl phosphonothioates simulants such as PhX bearing the appropriate side chain as well as the P-O and P-S cleavable bond to mimic accurately the V-series OPNA to prevent false positive or false negative results.

2.
Chembiochem ; : e202400139, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38682718

A binuclear Cu(II) cofactor was covalently bound to a lauric acid anchor. The resulting conjugate was characterized then combined with beta-lactoglobulin (ßLG) to generate a new biohybrid following the so-called "Trojan horse" strategy. This biohybrid was examined for its effectiveness in the oxidation of a catechol derivative to the corresponding quinone. The resulting biohybrid did not exhibit the sought after catecholase activity, likely due to its ability to bind and stabilize the semiquinone radical intermediate DTB-SQ. This semi-quinone radical was stabilized only in the presence of the protein and was characterized using optical and magnetic spectroscopic techniques, demonstrating stability for over 16 hours. Molecular docking studies revealed that this stabilization could occur owing to interactions of the semi-quinone with hydrophobic amino acid residues of ßLG.

3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article En | MEDLINE | ID: mdl-36498969

The covalent insertion of a cobalt heme into the cavity of an artificial protein named alpha Rep (αRep) leads to an artificial cobalt hemoprotein that is active as a catalyst not only for the photo-induced production of H2, but also for the reduction of CO2 in a neutral aqueous solution. This new artificial metalloenzyme has been purified and characterized by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), circular dichroism, and UltraViolet-Visible spectroscopy. Using theoretical experiments, the structure of this biohybrid and the positioning of the residues near the metal complex were examined, which made it possible to complete the coordination of the cobalt ion by an axial glutamine Gln283 ligand. While the Co(III)-porphyrin catalyst alone showed weak catalytic activity for both reactions, 10 times more H2 and four times more CO2 were produced when the Co(III)-porphyrin complex was buried in the hydrophobic cavity of the protein. This study thus provides a solid basis for further improvement of these biohybrids using well-designed modifications of the second and outer coordination sphere by site-directed mutagenesis of the host protein.


Coordination Complexes , Hemeproteins , Porphyrins , Cobalt/chemistry , Carbon Dioxide/chemistry , Coordination Complexes/chemistry , Catalysis , Hydrogen/chemistry
4.
Biochemistry ; 59(48): 4591-4600, 2020 12 08.
Article En | MEDLINE | ID: mdl-33231438

The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.


Galectins/chemistry , Galectins/metabolism , Mesoporphyrins/chemistry , Mesoporphyrins/metabolism , Apoptosis/drug effects , Binding Sites/drug effects , Galectins/pharmacology , Humans , In Vitro Techniques , Jurkat Cells , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs/drug effects , Protein Multimerization/drug effects , Protein Structure, Quaternary/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Scattering, Small Angle , Solubility , X-Ray Diffraction
5.
Chemistry ; 26(65): 14929-14937, 2020 Nov 20.
Article En | MEDLINE | ID: mdl-32588931

A novel inducible artificial metalloenzyme obtained by covalent attachment of a manganese(III)-tetraphenylporphyrin (MnTPP) to the artificial bidomain repeat protein, (A3A3')Y26C, is reported. The protein is part of the αRep family. The biohybrid was fully characterized by MALDI-ToF mass spectrometry, circular dichroism and UV/Vis spectroscopies. The peroxidase and monooxygenase activities were evaluated on the original and modified scaffolds including those that have a) an additional imidazole, b) a specific αRep bA3-2 that is known to induce the opening of the (A3A3') interdomain region and c) a derivative of the αRep bA3-2 inducer extended with a His6 -Tag (His6 -bA3-2). Catalytic profiles are highly dependent on the presence of co-catalysts with the best activity obtained with His6 -bA3-2. The entire mechanism was rationalized by an integrative molecular modeling study that includes protein-ligand docking and large-scale molecular dynamics. This constitutes the first example of an entirely artificial metalloenzyme with inducible peroxidase and monooxygenase activities, reminiscent of allosteric regulation of natural enzymatic pathways.


Mixed Function Oxygenases/metabolism , Catalysis , Metalloproteins , Peroxidases
6.
Biotechnol Appl Biochem ; 67(4): 563-573, 2020 Jul.
Article En | MEDLINE | ID: mdl-32134142

We report a new artificial hydrogenase made by covalent anchoring of the iron Knölker's complex to a xylanase S212C variant. This artificial metalloenzyme was found to be able to catalyze efficiently the transfer hydrogenation of the benchmark substrate trifluoroacetophenone by sodium formate in water, yielding the corresponding secondary alcohol as a racemic. The reaction proceeded more than threefold faster with the XlnS212CK biohybrid than with the Knölker's complex alone. In addition, efficient conversion of trifluoroacetophenone to its corresponding alcohol was reached within 60 H with XlnS212CK, whereas a ≈2.5-fold lower conversion was observed with Knölker's complex alone as catalyst. Moreover, the data were rationalized with a computational strategy suggesting the key factors of the selectivity. These results suggested that the Knölker's complex was most likely flexible and could experience free rotational reorientation within the active-site pocket of Xln A, allowing it to access the subsite pocket populated by trifluoroacetophenone.


Bacterial Proteins/chemistry , Endo-1,4-beta Xylanases/chemistry , Hydrogenase/chemistry , Iron-Sulfur Proteins/chemistry , Streptomyces lividans/enzymology , Bacterial Proteins/genetics , Catalysis , Endo-1,4-beta Xylanases/genetics , Hydrogenase/genetics , Hydrogenation , Iron-Sulfur Proteins/genetics , Streptomyces lividans/genetics , Water
7.
Angew Chem Int Ed Engl ; 57(49): 16141-16146, 2018 12 03.
Article En | MEDLINE | ID: mdl-30307095

Microperoxidase-8, a small, peroxidase-type enzyme was immobilized into nanoparticles of the mesoporous and ultra-stable metal-organic framework (MOF) MIL-101(Cr). The immobilized enzyme fully retained its catalytic activity and exhibited enhanced resistance to acidic conditions. The biocatalyst was reusable and showed a long-term stability. By exploiting the properties of the MOF's framework, we demonstrated, for the first time, that the MOF matrix could act in synergy with the enzyme (Microperoxidase-8) and enhance selectivity the oxidation reaction of dyes. The oxidation rate of the harmful negatively charged dye (methyl orange) was significantly increased after enzyme immobilization, probably as a result of the pre-concentration of the methyl orange reactant owing to a charge matching between this dye and the MOF.


Coloring Agents/chemistry , Metal-Organic Frameworks/chemistry , Peroxidases/chemistry , Coloring Agents/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Metal-Organic Frameworks/metabolism , Models, Molecular , Molecular Structure , Nanoparticles/chemistry , Nanoparticles/metabolism , Particle Size , Peroxidases/metabolism , Porosity , Surface Properties
8.
J Am Chem Soc ; 140(28): 8756-8762, 2018 07 18.
Article En | MEDLINE | ID: mdl-29909636

Artificial metalloenzymes are known to be promising tools for biocatalysis, but their recent compartmentalization has led to compatibly with cell components thus shedding light on possible therapeutic applications. We prepared and characterized artificial metalloenzymes based on the A2A adenosine receptor embedded in the cytoplasmic membranes of living human cells. The wild type receptor was chemically engineered into metalloenzymes by its association with strong antagonists that were covalently bound to copper(II) catalysts. The resulting cells enantioselectively catalyzed the abiotic Diels-Alder cycloaddition reaction of cyclopentadiene and azachalcone. The prospects of this strategy lie in the organ-confined in vivo preparation of receptor-based artificial metalloenzymes for the catalysis of reactions exogenous to the human metabolism. These could be used for the targeted synthesis of either drugs or deficient metabolites and for the activation of prodrugs, leading to therapeutic tools with unforeseen applications.


Metalloproteins/chemistry , Receptor, Adenosine A2A/chemistry , Receptors, Artificial/chemistry , Biocatalysis , Catalysis , Cell Line , Chalcone/analogs & derivatives , Copper , Cycloaddition Reaction , Cyclopentanes/chemistry , Humans , Models, Molecular , Stereoisomerism
9.
Dalton Trans ; 46(24): 7939-7946, 2017 Jun 28.
Article En | MEDLINE | ID: mdl-28604868

Persulfides of cysteine (CysSSH), glutathione (GSSH) or N-methoxycarbonyl-penicillamine (NAcPenSSH) react with the ferric form of myoglobin (metMb(iii)) to yield the oxy-ferrous (oxyMb(ii)) or deoxy-ferrous (deoxyMb(ii)) forms of myoglobin under aerobic or anaerobic conditions, respectively. Under aerobic conditions, CysSSH and NAcPenSSH react with the hypervalent form of myoglobin (ferrylMb(iv)) to yield oxyMb(ii) as the final product with the formation of metMb(iii) as an intermediate. CysSSH and NAcPenSSH coordinate the ferric form of N-acetylated microperoxidase (NAcMP11(iii)) to yield the disulfanido complex NAcMP11(iii)(NAcPenSS), as shown by UV-vis and EPR spectroscopy. Experiments carried out with various NAcMP11 derivatives demonstrate a redox equilibrium between the ferric/ferrous forms of the heme and the polysulfides/persulfides couple. Our results suggest that persulfides possess uncommon redox properties, analogous to that of dihydrolipoic acid.


Coenzymes/metabolism , Heme/metabolism , Myoglobin/metabolism , Peroxidases/metabolism , Sulfides/metabolism , Acetylation , Iron/metabolism , Oxidation-Reduction , Solubility , Water/chemistry
10.
Chemistry ; 23(42): 10156-10166, 2017 Jul 26.
Article En | MEDLINE | ID: mdl-28543753

αRep refers to a new family of artificial proteins based on a thermostable α-helical repeated motif. One of its members, αRep A3, forms a stable homo-dimer with a wide cleft that is able to accommodate metal complexes and thus appears to be suitable for generating new artificial biocatalysts. Based on the crystal structure of αRep A3, two positions (F119 and Y26) were chosen, and independently changed into cysteine residues. A phenanthroline ligand was covalently attached to the unique cysteine residue of each protein variant, and the corresponding biohybrids were purified and characterized. Once mutated and coupled to phenanthroline, the protein remained folded and dimeric. Copper(II) was specifically bound by the two biohybrids with two different binding modes. Furthermore, the holo-biohybrid A3F119NPH was found to be capable of enantioselectively catalyzing Diels-Alder (D-A) cycloadditions with up to 62 % ee. This study validates the choice of the αRep A3 dimer as a protein scaffold and provides a promising new route for the design and production of new enantioselective biohybrids based on entirely artificial proteins obtained from a highly diverse library.


Metalloproteins/metabolism , Amino Acid Sequence , Catalysis , Circular Dichroism , Copper/chemistry , Cycloaddition Reaction , Dimerization , Electron Spin Resonance Spectroscopy , Mass Spectrometry , Metalloproteins/chemistry , Phenanthrolines/chemistry , Protein Folding , Sequence Alignment , Stereoisomerism
11.
Chembiochem ; 17(5): 433-40, 2016 Mar 02.
Article En | MEDLINE | ID: mdl-26677011

A copper(II) cofactor coupled to a testosterone anchor, copper(II)-(5-(Piperazin-1-yl)-1,10-phenanthroline)testosterone-17-hemisuccinamide (10) was synthesized and associated with a neocarzinostatin variant, NCS-3.24 (KD =3 µm), thus generating a new artificial metalloenzyme by following a "Trojan horse" strategy. Interestingly, the artificial enzyme was able to efficiently catalyze the Diels-Alder cyclization reaction of cyclopentadiene (1) with 2-azachalcone (2). In comparison with what was observed with cofactor 10 alone, the artificial enzymes favored formation of the exo products (endo/exo ratios of 84:16 and 62:38, respectively, after 12 h). Molecular modeling studies assigned the synergy between the copper complex and the testosterone (KD =13 µm) moieties in the binding of 10 to good van der Waals complementarity. Moreover, by pushing the modeling exercise to its limits, we hypothesize on the molecular grounds that are responsible for the observed selectivity.


Enzymes/metabolism , Metalloproteins/metabolism , Zinostatin/metabolism , Biocatalysis , Carbon-13 Magnetic Resonance Spectroscopy , Cycloaddition Reaction , Molecular Docking Simulation , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
12.
Dalton Trans ; 45(2): 706-10, 2016 Jan 14.
Article En | MEDLINE | ID: mdl-26620115

Light induced enantioselective oxidation of an organic molecule with water as the oxygen atom source is demonstrated in a system where chirality is induced by a protein, oxygen atom transfer by a manganese corrole, and photocatalysis by ruthenium complexes.


Light , Organometallic Compounds/chemistry , Serum Albumin, Bovine/chemistry , Water/chemistry , Animals , Catalysis , Cattle , Oxidation-Reduction , Oxygen/chemistry , Photolysis/radiation effects , Spectrophotometry, Ultraviolet
13.
Nat Commun ; 6: 8509, 2015 Sep 30.
Article En | MEDLINE | ID: mdl-26419885

Development of artificial systems, capable of delivering electrons to metal-based catalysts for the reductive activation of dioxygen, has been proven very difficult for decades, constituting a major scientific lock for the elaboration of environmentally friendly oxidation processes. Here we demonstrate that the incorporation of a flavin mononucleotide (FMN) in a water-soluble polymer, bearing a locally hydrophobic microenvironment, allows the efficient reduction of the FMN by NADH. This supramolecular entity is then capable of catalysing a very fast single-electron reduction of manganese(III) porphyrin by splitting the electron pair issued from NADH. This is fully reminiscent of the activity of natural reductases such as the cytochrome P450 reductases with kinetic parameters, which are three orders of magnitude faster compared with other artificial systems. Finally, we show as a proof of concept that the reduced manganese porphyrin activates dioxygen and catalyses the oxidation of organic substrates in water.


Flavin Mononucleotide/metabolism , Manganese/metabolism , Oxygen/metabolism , Catalysis , Electron Transport , Flavin Mononucleotide/chemistry , Kinetics , NAD/metabolism , Oxidation-Reduction , Porphyrins/metabolism
14.
Chemistry ; 21(34): 12188-93, 2015 Aug 17.
Article En | MEDLINE | ID: mdl-26178593

An artificial metalloenzyme based on the covalent grafting of a nonheme Fe(II) polyazadentate complex into bovine ß-lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the Fe(II) catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin-state conversion of the initial high spin (S=2) Fe(II) complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center's first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2 O2 reveals the generation of a high spin (S=5/2) Fe(III) (η(2) -O2 ) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.


Aza Compounds/chemistry , Coordination Complexes/chemistry , Ferrous Compounds/chemistry , Hydrogen Peroxide/chemistry , Lactoglobulins/chemistry , Proteins/chemical synthesis , Animals , Biocatalysis , Catalysis , Cattle , Oxidation-Reduction , Proteins/chemistry
15.
Bioorg Med Chem ; 22(20): 5678-86, 2014 Oct 15.
Article En | MEDLINE | ID: mdl-24984934

A new zinc(II)-cofactor coupled to a testosterone anchor, zinc(II)-N,N-bis(2-pyridylmethyl)-1,3-diamino-propa-2-ol-N'(17'-succinimidyltestosterone) (Zn-Testo-BisPyPol) 1-Zn has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called 'Trojan horse' strategy. This new 1-Zn-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the hydrolysis of the RNA model HPNP with a good catalytic efficiency (kcat/KM=13.6M(-1)s(-1) at pH 7) that places it among the best artificial catalysts for this reaction. Molecular modeling studies showed that a synergy between the binding of the steroid moiety and that of the BisPyPol into the protein binding site can explain the experimental results, indicating a better affinity of 1-Zn for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the artificial cofactor entirely fills the cavity, the testosterone part of 1-Zn being bound to one the two subdomains of the protein providing with good complementarities whereas its metal ion remains widely exposed to the solvent which made it a valuable tool for the catalysis of hydrolysis reactions, such as that of HPNP. Some possible improvements in the 'Trojan horse' strategy for obtaining better catalysts of selective reactions will be further studied.


Biocatalysis , Organometallic Compounds/metabolism , Ribonucleases/metabolism , Zinc/metabolism , Zinostatin/metabolism , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Zinc/chemistry , Zinostatin/chemistry
16.
Dalton Trans ; 43(22): 8344-54, 2014 Jun 14.
Article En | MEDLINE | ID: mdl-24728274

An anionic iron(III)-porphyrin-testosterone conjugate 1-Fe has been synthesized and fully characterized. It has been further associated with a neocarzinostatin variant, NCS-3.24, to generate a new artificial metalloenzyme following the so-called 'Trojan Horse' strategy. This new 1-Fe-NCS-3.24 biocatalyst showed an interesting catalytic activity as it was found able to catalyze the chemoselective and slightly enantioselective (ee = 13%) sulfoxidation of thioanisole by H2O2. Molecular modelling studies show that a synergy between the binding of the steroid moiety and that of the porphyrin macrocycle into the protein binding site can explain the experimental results, indicating a better affinity of 1-Fe for the NCS-3.24 variant than testosterone and testosterone-hemisuccinate themselves. They also show that the Fe-porphyrin complex is sandwiched between the two subdomains of the protein providing with good complementarities. However, the artificial cofactor entirely fills the cavity and its metal ion remains widely exposed to the solvent which explains the moderate enantioselectivity observed. Some possible improvements in the "Trojan Horse" strategy for obtaining better catalysts of selective oxidations are presented.


Biocatalysis , Metalloporphyrins/chemical synthesis , Zinostatin/chemistry , Hydrogen Peroxide/chemistry , Metalloporphyrins/chemistry , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Sulfides/chemistry
17.
Dalton Trans ; 43(21): 7708-11, 2014 Jun 07.
Article En | MEDLINE | ID: mdl-24728478

The first cluster containing acc was prepared via supramolecular self-assembly. This Cu(II) cluster traps Na(+), as shown in the solid state by the crystal structure and in solution by ESI-MS. Further characterisations revealed a ferromagnetic intracluster exchange and an irreversible reduction with a rapid intracluster electron transfer.

18.
Chembiochem ; 13(2): 240-51, 2012 Jan 23.
Article En | MEDLINE | ID: mdl-22190469

Here we report the best artificial metalloenzyme to date for the selective oxidation of aromatic alkenes; it was obtained by noncovalent insertion of Mn(III)-meso-tetrakis(p-carboxyphenyl)porphyrin [Mn(TpCPP), 1-Mn] into a host protein, xylanase 10A from Streptomyces lividans (Xln10A). Two metallic complexes-N,N'-ethylene bis(2-hydroxybenzylimine)-5,5'-dicarboxylic acid Mn(III) [(Mn-salen), 2-Mn] and 1-Mn-were associated with Xln10A, and the two hybrid biocatalysts were characterised by UV-visible spectroscopy, circular dichroism and molecular modelling. Only the artificial metalloenzyme based on 1-Mn and Xln10A was studied for its catalytic properties in the oxidation of various substituted styrene derivatives by KHSO(5): after optimisation, the 1-Mn-Xln10A artificial metalloenzyme was able to catalyse the oxidation of para-methoxystyrene by KHSO(5) with a 16 % yield and the best enantioselectivity (80 % in favour of the R isomer) ever reported for an artificial metalloenzyme.


Endo-1,4-beta Xylanases/chemistry , Epoxy Compounds/chemistry , Manganese/chemistry , Metalloproteins/chemistry , Catalysis , Circular Dichroism , Endo-1,4-beta Xylanases/metabolism , Manganese/metabolism , Metalloproteins/metabolism , Models, Molecular , Molecular Structure , Oxidation-Reduction , Spectrophotometry, Ultraviolet , Stereoisomerism , Styrene/chemistry
19.
Org Biomol Chem ; 7(16): 3208-11, 2009 Aug 21.
Article En | MEDLINE | ID: mdl-19641774

Two new artificial hemoproteins or "hemozymes", obtained by non covalent insertion of Fe(III)-meso-tetra-p-carboxy- and -p-sulfonato-phenylporphyrin into xylanase A from Streptomyces lividans, were characterized by UV-visible spectroscopy and molecular modeling studies, and were found to catalyze the chemo- and stereoselective oxidation of thioanisole into the S sulfoxide, the best yield (85 +/- 4%) and enantiomeric excess (40% +/- 3%) being obtained with Fe(III)-meso-tetra-p-carboxyphenylporphyrin-Xln10A as catalyst in the presence of imidazole as co-catalyst.


Metalloproteins/chemistry , Oxygen/chemistry , Sulfides/chemistry , Catalysis , Molecular Structure , Oxidation-Reduction , Sulfoxides/chemistry
20.
Biochimie ; 91(10): 1321-3, 2009 Oct.
Article En | MEDLINE | ID: mdl-19285537

The design of artificial hemoproteins that could lead to new biocatalysts for selective oxidation reactions of organic compounds presents a huge interest especially in pharmacology, both for a better understanding of the metabolic profile of drugs and for the synthesis of enantiomerically pure molecules that could be involved in the design of drugs. The present results show that the so-called "host-guest strategy" that involves the non-covalent incorporation of anionic water-soluble iron-porphyrins into xylanase A from Streptomyces lividans, a low cost protein, leads to such an artificial hemoprotein that is able to perform the stereoselective oxidation of sulfides.


Hemeproteins/chemical synthesis , Hemeproteins/metabolism , Hemeproteins/chemistry , Models, Molecular , Oxidation-Reduction
...