Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Dev Dyn ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689520

BACKGROUND: Tapeworms are parasitic flatworms that independently evolved a segmented body plan, historically confounding comparisons with other animals. Anteroposterior (AP) patterning in free-living flatworms and in tapeworm larvae is associated with canonical Wnt signaling and positional control genes (PCGs) are expressed by their musculature in regionalized domains along the AP axis. Here, we extend investigations of PCG expression to the adult of the mouse bile-duct tapeworm Hymenolepis microstoma, focusing on the growth zone of the neck region and the initial establishment of segmental patterning. RESULTS: We show that the adult musculature includes new, segmental elements that first appear in the neck and that the spatial patterns of Wnt factors are consistent with expression by muscle cells. Wnt factor expression is highly regionalized and becomes AP-polarized in segments, marking them with axes in agreement with the polarity of the main body axis, while the transition between the neck and strobila is specifically demarcated by the expression domain of a Wnt11 paralog. CONCLUSION: We suggest that segmentation could originate in the muscular system and participate in patterning the AP axis through regional and polarized expression of PCGs, akin to the gene regulatory networks employed by free-living flatworms and other animals.

2.
Cell Rep ; 42(12): 113485, 2023 12 26.
Article En | MEDLINE | ID: mdl-38032794

During development and aging, genome mutation leading to loss of heterozygosity (LOH) can uncover recessive phenotypes within tissue compartments. This phenomenon occurs in normal human tissues and is prevalent in pathological genetic conditions and cancers. While studies in yeast have defined DNA repair mechanisms that can promote LOH, the predominant pathways and environmental triggers in somatic tissues of multicellular organisms are not well understood. Here, we investigate mechanisms underlying LOH in intestinal stem cells in Drosophila. Infection with the pathogenic bacteria, Erwinia carotovora carotovora 15, but not Pseudomonas entomophila, increases LOH frequency. Using whole genome sequencing of somatic LOH events, we demonstrate that they arise primarily via mitotic recombination. Molecular features and genetic evidence argue against a break-induced replication mechanism and instead support cross-over via double Holliday junction-based repair. This study provides a mechanistic understanding of mitotic recombination, an important mediator of LOH, and its effects on stem cells in vivo.


Drosophila , Recombination, Genetic , Animals , Humans , Drosophila/genetics , Recombination, Genetic/genetics , DNA Repair , Loss of Heterozygosity , Saccharomyces cerevisiae/genetics , Stem Cells
3.
Genome Res ; 31(8): 1419-1432, 2021 08.
Article En | MEDLINE | ID: mdl-34168010

Spontaneous mutations can alter tissue dynamics and lead to cancer initiation. Although large-scale sequencing projects have illuminated processes that influence somatic mutation and subsequent tumor evolution, the mutational dynamics operating in the very early stages of cancer development are currently not well understood. To explore mutational processes in the early stages of cancer evolution, we exploited neoplasia arising spontaneously in the Drosophila intestine. Analysing whole-genome sequencing data with a dedicated bioinformatic pipeline, we found neoplasia formation to be driven largely through the inactivation of Notch by structural variants, many of which involve highly complex genomic rearrangements. The genome-wide mutational burden in neoplasia was found to be similar to that of several human cancers. Finally, we identified genomic features associated with spontaneous mutation, and defined the evolutionary dynamics and mutational landscape operating within intestinal neoplasia over the short lifespan of the adult fly. Our findings provide unique insight into mutational dynamics operating over a short timescale in the genetic model system, Drosophila melanogaster.


Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Genomics , Intestines , Mutation , Stem Cells
4.
EMBO J ; 40(9): e106388, 2021 05 03.
Article En | MEDLINE | ID: mdl-33634906

Transposable elements (TEs) play a significant role in evolution, contributing to genetic variation. However, TE mobilization in somatic cells is not well understood. Here, we address the prevalence of transposition in a somatic tissue, exploiting the Drosophila midgut as a model. Using whole-genome sequencing of in vivo clonally expanded gut tissue, we have mapped hundreds of high-confidence somatic TE integration sites genome-wide. We show that somatic retrotransposon insertions are associated with inactivation of the tumor suppressor Notch, likely contributing to neoplasia formation. Moreover, applying Oxford Nanopore long-read sequencing technology we provide evidence for tissue-specific differences in retrotransposition. Comparing somatic TE insertional activity with transcriptomic and small RNA sequencing data, we demonstrate that transposon mobility cannot be simply predicted by whole tissue TE expression levels or by small RNA pathway activity. Finally, we reveal that somatic TE insertions in the adult fly intestine are enriched in genic regions and in transcriptionally active chromatin. Together, our findings provide clear evidence of ongoing somatic transposition in Drosophila and delineate previously unknown features underlying somatic TE mobility in vivo.


DNA Transposable Elements , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Intestinal Neoplasms/genetics , Receptors, Notch/genetics , Animals , Clonal Evolution , Female , Gene Expression Profiling , Gene Silencing , Male , Organ Specificity , Recombination, Genetic , Sequence Analysis, RNA/methods , Whole Genome Sequencing
5.
Plant Commun ; 1(6): 100105, 2020 11 09.
Article En | MEDLINE | ID: mdl-33367265

Polyploidy is pervasive in angiosperm evolution and plays important roles in adaptation and speciation. However, polyploid groups are understudied due to complex sequence homology, challenging genome assembly, and taxonomic complexity. Here, we study adaptive divergence in taxonomically complex eyebrights (Euphrasia), where recent divergence, phenotypic plasticity, and hybridization blur species boundaries. We focus on three closely related tetraploid species with contrasting ecological preferences that are sympatric on Fair Isle, a small isolated island in the British Isles. Using a common garden experiment, we show a genetic component to the morphological differences present between these species. Using whole-genome sequencing and a novel k-mer approach we call "Tetmer", we demonstrate that the species are of allopolyploid origin, with a sub-genome divergence of approximately 5%. Using ∼2 million SNPs, we show sub-genome homology across species, with a very low sequence divergence characteristic of recent speciation. This genetic variation is broadly structured by species, with clear divergence of Fair Isle heathland Euphrasia micrantha, while grassland Euphrasia arctica and coastal Euphrasia foulaensis are more closely related. Overall, we show that tetraploid Euphrasia is a system of allopolyploids of postglacial species divergence, where adaptation to novel environments may be conferred by old variants rearranged into new genetic lineages.


Adaptation, Biological , Biological Evolution , Ecosystem , Euphrasia/anatomy & histology , Euphrasia/genetics , Islands , Scotland , Species Specificity , Tetraploidy
6.
F1000Res ; 6: 229, 2017.
Article En | MEDLINE | ID: mdl-29043063

Background: Many recent articles have presented a bleak view of career prospects in biomedical research in the US. Too many PhDs and postdocs are trained for too few research positions, creating a "holding-tank" of experienced senior postdocs who are unable to get a permanent position. Coupled with relatively low salaries and high levels of pressure to publish in top-tier academic journals, this has created a toxic environment that is perhaps responsible for a recently observed decline in biomedical postdocs in the US, the so-called "postdocalypse". Methods: In order to address the gulf of information relating to working habits and attitudes of UK-based biomedical researchers, a link to an online survey was included in an article published in the Guardian newspaper. Survey data were collected between 21 st March 2016 and 6 th November 2016 and analysed to examine discrete profiles for three major career stages: the PhD, the postdoc and the principal investigator. Results: Overall, the data presented here echo trends observed in the US: The 520 UK-based biomedical researchers responding to the survey reported feeling disillusioned with academic research, due to the low chance of getting a permanent position and the long hours required at the bench. Also like the US, large numbers of researchers at each distinct career stage are considering leaving biomedical research altogether. Conclusions: There are several systemic flaws in the academic scientific research machine - for example the continual overproduction of PhDs and the lack of stability in the early-mid stages of a research career - that are slowly being addressed in countries such as the US and Germany. These data suggest that similar flaws also exist in the UK, with a large proportion of respondents concerned about their future in research. To avoid lasting damage to the biomedical research agenda in the UK, addressing such concerns should be a major priority.

7.
Dev Biol ; 431(2): 152-167, 2017 11 15.
Article En | MEDLINE | ID: mdl-28947179

The transcription factor Six1 and its cofactor Eya1 are important regulators of neurogenesis in cranial placodes, activating genes promoting both a progenitor state, such as hes8, and neuronal differentiation, such as neurog1. Here, we use gain and loss of function studies in Xenopus laevis to elucidate how these genes function during placodal neurogenesis. We first establish that hes8 is activated by Notch signaling and represses neurog1 and neuronal differentiation, indicating that it mediates lateral inhibition. Using hes8 knockdown we demonstrate that hes8 is essential for limiting neuronal differentiation during normal placode development. We next show that Six1 and Eya1 cell autonomously activate both hes8 and neurog1 in a dose-dependent fashion, with increasing upregulation at higher doses, while neuronal differentiation is increasingly repressed. However, high doses of Six1 and Eya1 upregulate neurog1 only transiently, whereas low doses of Six1 and Eya1 ultimately promote both neurog1 expression and neuronal differentiation. Finally, we show that Six1 and Eya1 can activate hes8 and arrest neuronal differentiation even when Notch signaling is blocked. Our findings indicate that Six1 and Eya1 can both promote and arrest neuronal differentiation by activating the Notch pathway genes neurog1 and hes8, respectively, revealing a novel mechanism of Six1/Eya1 action during placodal neurogenesis.


Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptors, Notch/genetics , Signal Transduction/genetics , Xenopus Proteins/metabolism , Animals , Biomarkers/metabolism , Ectoderm/metabolism , Embryo, Nonmammalian/metabolism , Neurogenesis/genetics , Phylogeny , Xenopus Proteins/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics
8.
Glob Chang Biol ; 23(4): 1400-1414, 2017 04.
Article En | MEDLINE | ID: mdl-27670638

Phenological changes in key seasonally expressed life-history traits occurring across periods of climatic and environmental change can cause temporal mismatches between interacting species, and thereby impact population and community dynamics. However, studies quantifying long-term phenological changes have commonly only measured variation occurring in spring, measured as the first or mean dates on which focal traits or events were observed. Few studies have considered seasonally paired events spanning spring and autumn or tested the key assumption that single convenient metrics accurately capture entire event distributions. We used 60 years (1955-2014) of daily bird migration census data from Fair Isle, Scotland, to comprehensively quantify the degree to which the full distributions of spring and autumn migration timing of 13 species of long-distance migratory bird changed across a period of substantial climatic and environmental change. In most species, mean spring and autumn migration dates changed little. However, the early migration phase (≤10th percentile date) commonly got earlier, while the late migration phase (≥90th percentile date) commonly got later. Consequently, species' total migration durations typically lengthened across years. Spring and autumn migration phenologies were not consistently correlated within or between years within species and hence were not tightly coupled. Furthermore, different metrics quantifying different aspects of migration phenology within seasons were not strongly cross-correlated, meaning that no single metric adequately described the full pattern of phenological change. These analyses therefore reveal complex patterns of simultaneous advancement, temporal stability and delay in spring and autumn migration phenologies, altering species' life-history structures. Additionally, they demonstrate that this complexity is only revealed if multiple metrics encompassing entire seasonal event distributions, rather than single metrics, are used to quantify phenological change. Existing evidence of long-term phenological changes detected using only one or two metrics should consequently be interpreted cautiously because divergent changes occurring simultaneously could potentially have remained undetected.


Animal Migration , Birds , Animals , Environment , Scotland , Seasons
9.
Elife ; 52016 Aug 31.
Article En | MEDLINE | ID: mdl-27576864

The pre-placodal ectoderm, marked by the expression of the transcription factor Six1 and its co-activator Eya1, develops into placodes and ultimately into many cranial sensory organs and ganglia. Using RNA-Seq in Xenopus laevis we screened for presumptive direct placodal target genes of Six1 and Eya1 by overexpressing hormone-inducible constructs of Six1 and Eya1 in pre-placodal explants, and blocking protein synthesis before hormone-inducing nuclear translocation of Six1 or Eya1. Comparing the transcriptome of explants with non-induced controls, we identified hundreds of novel Six1/Eya1 target genes with potentially important roles for placode development. Loss-of-function studies confirmed that target genes encoding known transcriptional regulators of progenitor fates (e.g. Sox2, Hes8) and neuronal/sensory differentiation (e.g. Ngn1, Atoh1, Pou4f1, Gfi1) require Six1 and Eya1 for their placodal expression. Our findings provide insights into the gene regulatory network regulating placodal neurogenesis downstream of Six1 and Eya1 suggesting new avenues of research into placode development and disease.

10.
PLoS One ; 10(7): e0131527, 2015.
Article En | MEDLINE | ID: mdl-26177461

Determining which demographic and ecological parameters contribute to variation in population growth rate is crucial to understanding the dynamics of declining populations. This study aimed to evaluate the magnitude and mechanisms of an apparent major decline in an Atlantic Puffin Fratercula arctica population. This was achieved using a 27-year dataset to estimate changes in population size and in two key demographic rates: adult survival and breeding success. Estimated demographic variation was then related to two ecological factors hypothesised to be key drivers of demographic change, namely the abundance of the main predator at the study site, the Great Skua Stercorarius skua, and Atlantic Puffin chick food supply, over the same 27-year period. Using a population model, we assessed whether estimated variation in adult survival and reproductive success was sufficient to explain the population change observed. Estimates of Atlantic Puffin population size decreased considerably during the study period, approximately halving, whereas Great Skua population estimates increased, approximately trebling. Estimated adult Atlantic Puffin survival remained high across all years and did not vary with Great Skua abundance; however, Atlantic Puffin breeding success and quantities of fish prey brought ashore by adults both decreased substantially through the period. A population model combining best possible demographic parameter estimates predicted rapid population growth, at odds with the long-term decrease observed. To simulate the observed decrease, population models had to incorporate low immature survival, high immature emigration, or increasingly high adult non-breeding rates. We concluded that reduced recruitment of immatures into the breeding population was the most likely cause of population decrease. This study showed that increase in the size of a predator population does not always impact on the survival of adult prey and that reduced recruitment can be a crucial determinant of seabird population size but can easily go undetected.


Charadriiformes/physiology , Animals , Female , Food Chain , Male , Population Dynamics , Predatory Behavior , Reproduction , Survival Rate , United Kingdom
11.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Article En | MEDLINE | ID: mdl-23485966

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Adaptation, Physiological/genetics , Cestoda/genetics , Genome, Helminth/genetics , Parasites/genetics , Animals , Biological Evolution , Cestoda/drug effects , Cestoda/physiology , Cestode Infections/drug therapy , Cestode Infections/metabolism , Conserved Sequence/genetics , Echinococcus granulosus/genetics , Echinococcus multilocularis/drug effects , Echinococcus multilocularis/genetics , Echinococcus multilocularis/metabolism , Genes, Helminth/genetics , Genes, Homeobox/genetics , HSP70 Heat-Shock Proteins/genetics , Humans , Hymenolepis/genetics , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy , Parasites/drug effects , Parasites/physiology , Proteome/genetics , Stem Cells/cytology , Stem Cells/metabolism , Taenia solium/genetics
12.
Dev Genes Evol ; 221(4): 187-97, 2011 Oct.
Article En | MEDLINE | ID: mdl-21892738

Wnt genes encode secreted glycoproteins that act in cell-cell signalling to regulate a wide array of developmental processes, ranging from cellular differentiation to axial patterning. Discovery that canonical Wnt/ß-catenin signalling is responsible for regulating head/tail specification in planarian regeneration has recently highlighted their importance in flatworm (phylum Platyhelminthes) development, but examination of their roles in the complex development of the diverse parasitic groups has yet to be conducted. Here, we characterise Wnt genes in the model tapeworm Hymenolepis microstoma and mine genomic resources of free-living and parasitic species for the presence of Wnts and downstream signalling components. We identify orthologs through a combination of BLAST and phylogenetic analyses, showing that flatworms have a highly reduced and dispersed complement that includes orthologs of only five subfamilies (Wnt1, Wnt2, Wnt4, Wnt5 and Wnt11) and fewer paralogs in parasitic flatworms (5-6) than in planarians (9). All major signalling components are identified, including antagonists and receptors, and key binding domains are intact, indicating that the canonical (Wnt/ß-catenin) and non-canonical (planar cell polarity and Wnt/Ca(2+)) pathways are functional. RNA-Seq data show expression of all Hymenolepis Wnts and most downstream components in adults and larvae with the notable exceptions of wnt1, expressed only in adults, and wnt2 expressed only in larvae. The distribution of Wnt subfamilies in animals corroborates the idea that the last common ancestor of the Cnidaria and Bilateria possessed all contemporary Wnts and highlights the extent of gene loss in flatworms.


Hymenolepis/genetics , Hymenolepis/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Animals , Biological Evolution , Body Patterning , Gene Expression , Genome , Hymenolepis/embryology , Phylogeny , Wnt Signaling Pathway
...