Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Liver Int ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101371

RESUMEN

BACKGROUND AND AIMS: There is increased interest in utilizing dietary interventions to alter the progression of autoimmune diseases. These efforts are driven by associations of gut microbiota/metabolites with levels of short-chain fatty acids (SCFAs). Propionate is a key SCFA that is commonly used as a food preservative and is endogenously generated by bacterial fermentation of non-digestible carbohydrates in the gut. A thesis has suggested that a diet rich in propionate and other SCFAs can successfully modulate autoimmunity. Herein, we investigated the effect of long-term administration of propionylated high-amylose resistant starches (HAMSP) on the course of murine primary biliary cholangitis. MATERIALS AND METHODS: Groups of female ARE-Del mice were fed an HAMSP diet either before or after disease onset. A detailed immunobiological analysis was performed involving autoantibodies and rigorous T-cell phenotyping, including enumeration of T-cell subsets in the spleen, liver, intestinal intraepithelial lymphocytes and lamina propria by flow cytometry. Histopathological scores were used to assess the frequency and severity of liver inflammation and damage to hepatocytes and bile ducts. RESULTS: Our results demonstrate that a long-term propionate-yielding diet re-populated the T-cell pool with decreased naïve and central memory T-cell subsets and an increase in the effector memory T cells in mice. Similarly, long-term HAMSP intake reduced CD4+CD8+ double-positive T cells in intraepithelial lymphocytes and the intestinal lamina propria. Critically, HAMSP consumption led to moderate-to-severe hepatocellular steatosis in ARE-Del mice, independent of the stage of autoimmune cholangitis. CONCLUSIONS: Our data suggest that administration of HAMSP induces both regulatory and effector T cells. Furthermore, HAMSP administration resulted in hepatocellular steatosis. Given the interest in dietary modulation of autoimmunity and because propionate is widely used as a food preservative, these data have significant implications. This study also provides new insights into the immunological and pathological effects of chronic propionate exposure.

2.
J Autoimmun ; 141: 103114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748979

RESUMEN

The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Microbioma Gastrointestinal , Humanos , Ecosistema , Sistema Inmunológico , Inmunidad Adaptativa , Tolerancia Inmunológica , Disbiosis
3.
J Autoimmun ; 139: 103070, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37390745

RESUMEN

Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Animales , Autoinmunidad , Imitación Molecular , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Enfermedades Autoinmunes/epidemiología
4.
Immunogenetics ; 75(1): 27-37, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36097289

RESUMEN

We previously reported that nonobese diabetic (NOD) congenic mice (NOD.c3c4 mice) developed an autoimmune biliary disease (ABD) with similarities to human primary biliary cholangitis (PBC), including anti-mitochondrial antibodies and organ-specific biliary lymphocytic infiltrates. We narrowed the possible contributory regions in a novel NOD.Abd3 congenic mouse to a B10 congenic region on chromosome 1 ("Abd3") and a mutated Pkhd1 gene (Pkhd1del36-67) upstream from Abd3, and we showed via backcrossing studies that the NOD genetic background was necessary for disease. Here, we show that NOD.Abd3 mice develop anti-PDC-E2 autoantibodies at high levels, and that placing the chromosome 1 interval onto a scid background eliminates disease, demonstrating the critical role of the adaptive immune system in pathogenesis. While the NOD genetic background is essential for disease, it was still unclear which of the two regions in the Abd3 locus were necessary and sufficient for disease. Here, using a classic recombinant breeding approach, we prove that the mutated Pkhd1del36-67 alone, on the NOD background, causes ABD. Further characterization of the mutant sequence demonstrated that the Pkhd1 gene is disrupted by an ETnII-beta retrotransposon inserted in intron 35 in an anti-sense orientation. Homozygous Pkhd1 mutations significantly affect viability, with the offspring skewed away from a Mendelian distribution towards NOD Pkhd1 homozygous or heterozygous genotypes. Cell-specific abnormalities, on a susceptible genetic background, can therefore induce an organ-specific autoimmunity directed to the affected cells. Future work will aim to characterize how mutant Pkhd1 can cause such an autoimmune response.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus , Ratones , Animales , Humanos , Ratones Endogámicos NOD , Autoanticuerpos/genética , Ratones Congénicos , Antecedentes Genéticos , Diabetes Mellitus Tipo 1/genética , Ratones Endogámicos C57BL , Receptores de Superficie Celular/genética
5.
J Autoimmun ; 132: 102897, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029718

RESUMEN

OBJECTIVE: The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS: To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS: Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.


Asunto(s)
Enfermedades Autoinmunes , Colangitis , Humanos , Femenino , Ratones , Animales , Colangitis/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Antígenos CD20 , Autoanticuerpos , Inmunoglobulina M
6.
Front Immunol ; 13: 918837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935980

RESUMEN

Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Ligando 4-1BB , Animales , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Endogámicos NOD , Receptores del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores
7.
Cell Mol Immunol ; 19(10): 1130-1140, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36042351

RESUMEN

The interferon (IFN) signaling pathways are major immunological checkpoints with clinical significance in the pathogenesis of autoimmunity. We have generated a unique murine model named ARE-Del, with chronic overexpression of IFNγ, by altering IFNγ metabolism. Importantly, these mice develop an immunologic and clinical profile similar to patients with primary biliary cholangitis, including high titers of autoantibodies and portal inflammation. We hypothesized that the downregulation of IFN signaling pathways with a JAK1/2 inhibitor would inhibit the development and progression of cholangitis. To study this hypothesis, ARE-Del+/- mice were treated with the JAK1/2 inhibitor ruxolitinib and serially studied. JAK inhibition resulted in a significant reduction in portal inflammation and bile duct damage, associated with a significant reduction in splenic and hepatic CD4+ T cells and CD8+ T cells. Functionally, ruxolitinib inhibited the secretion of the proinflammatory cytokines IFNγ and TNF from splenic CD4+ T cells. Additionally, ruxolitinib treatment also decreased the frequencies of germinal center B (GC B) cells and T follicular helper (Tfh) cells and led to lower serological AMA levels. Of note, liver and peritoneal macrophages were sharply decreased and polarized from M1 to M2 with a higher level of IRF4 expression after ruxolitinib treatment. Mechanistically, ruxolitinib inhibited the secretion of IL-6, TNF and MCP1 and the expression of STAT1 but promoted the expression of STAT6 in macrophages in vitro, indicating that M1 macrophage polarization to M2 occurred through activation of the STAT6-IRF4 pathway. Our data highlight the significance, both immunologically and clinically, of the JAK/STAT signaling pathway in autoimmune cholangitis.


Asunto(s)
Enfermedades Autoinmunes , Colangitis , Inhibidores de las Cinasas Janus , Animales , Autoanticuerpos , Enfermedades Autoinmunes/tratamiento farmacológico , Linfocitos T CD8-positivos , Colangitis/tratamiento farmacológico , Inflamación , Interferón gamma , Interleucina-6 , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Ratones , Nitrilos , Pirazoles , Pirimidinas
8.
Diabetes ; 71(3): 470-482, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040474

RESUMEN

We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Endosomas/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Receptor Toll-Like 4/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Antígeno CD11b/análisis , Diabetes Mellitus Tipo 1/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Ratones , Ratones Endogámicos NOD , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/fisiología
9.
Hepatology ; 75(2): 266-279, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34608663

RESUMEN

BACKGROUND AND AIMS: The increased frequency of urinary tract infections in patients with primary biliary cholangitis (PBC) and the cross-reactivity between the lipoyl domains (LD) of human pyruvate dehydrogenase complex (hPDC-E2) and Escherichia coli PDC-E2 (ePDC-E2) have long suggested a role of E. coli in causality of PBC. This issue, however, has remained speculative. We hypothesized that by generating specific constructs of human and E. coli PDC-E2, we would be able to assess the specificity of autoantibody responses and define whether exposure to E. coli in susceptible hosts is the basis for the antimitochondrial antibody (AMA) response. APPROACH AND RESULTS: Importantly, the reactivity of hPDC-E2 LD (hPDC-E2LD) affinity-purified antibodies against hPDC-E2LD could only be removed by prior absorption with hPDC-E2LD and not ePDC-E2, suggesting the presence of unique human PDC-E2 epitopes distinct from E. coli PDC-E2. To identify the autoepitope(s) present in hPDC-E2LD, a more detailed study using a variety of PDC-E2 constructs was tested, including the effect of lipoic acid (LA) on ePDC-E2 conformation and AMA recognition. Individual recombinant ePDCE2 LD domains LD1, LD2 and LD3 did not react with either AMA or antibodies to LA (anti-LA), but in contrast, anti-LA was readily reactive against purified recombinant LD1, LD2, and LD3 expressed in tandem (LP); such reactivity increased when LP was precultured with LA. Moreover, when the three LD (LD1, LD2, LD3) domains were expressed in tandem in pET28a or when LD1 was expressed in another plasmid pGEX, they were lipoylated and reactive to PBC sera. CONCLUSIONS: In conclusion, our data are consistent with an exposure to E. coli that elicits specific antibody to ePDC-E2 resulting in determinant spreading and the classic autoantibody to hPDC-E2LD. We argue this is the first step to development of human PBC.


Asunto(s)
Autoantígenos/inmunología , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/inmunología , Infecciones por Escherichia coli/complicaciones , Escherichia coli/inmunología , Cirrosis Hepática Biliar/microbiología , Mitocondrias/inmunología , Proteínas Mitocondriales/inmunología , Autoanticuerpos/sangre , Estudios de Casos y Controles , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Escherichia coli/enzimología , Hepatitis Autoinmune/sangre , Humanos , Lipoilación , Conformación Molecular/efectos de los fármacos , Ácido Tióctico/inmunología , Ácido Tióctico/farmacología
10.
J Immunol ; 207(8): 2051-2059, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526376

RESUMEN

Ag-specific immunotherapy to restore immune tolerance to self-antigens, without global immune suppression, is a long-standing goal in the treatment of autoimmune disorders such as type 1 diabetes (T1D). However, vaccination with autoantigens such as insulin or glutamic acid decarboxylase have largely failed in human T1D trials. Induction and maintenance of peripheral tolerance by vaccination requires efficient autoantigen presentation by APCs. In this study, we show that a lipophilic modification at the N-terminal end of CD4+ epitopes (lipo-peptides) dramatically improves peptide Ag presentation. We designed amphiphilic lipo-peptides to efficiently target APCs in the lymph nodes by binding and trafficking with endogenous albumin. Additionally, we show that lipophilic modification anchors the peptide into the membranes of APCs, enabling a bivalent cell-surface Ag presentation. The s.c. injected lipo-peptide accumulates in the APCs in the lymph node, enhances the potency and duration of peptide Ag presentation by APCs, and induces Ag-specific immune tolerance that controls both T cell- and B cell-mediated immunity. Immunization with an amphiphilic insulin B chain 9-23 peptide, an immunodominant CD4+ T cell epitope in NOD mice, significantly suppresses the activation of T cells, increases inhibitory cytokine production, induces regulatory T cells, and delays the onset and lowers the incidence of T1D. Importantly, treatment with a lipophilic ß-cell peptide mixture delays progression to end-stage diabetes in acutely diabetic NOD mice, whereas the same doses of standard soluble peptides were not effective. Amphiphilic modification effectively enhances Ag presentation for peptide-based immune regulation of autoimmune diseases.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Epítopos de Linfocito T/metabolismo , Insulina/metabolismo , Fragmentos de Péptidos/metabolismo , Tensoactivos/metabolismo , Albúminas , Animales , Presentación de Antígeno , Femenino , Humanos , Tolerancia Inmunológica , Inmunización , Inmunomodulación , Insulina/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Fragmentos de Péptidos/inmunología
11.
Autoimmun Rev ; 20(11): 102942, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34509657

RESUMEN

The myristoylated alanine-rich C-kinase substrate (MARCKS) and the MARCKS-related protein (MARCKSL1) are ubiquitous, highly conserved membrane-associated proteins involved in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis. MARCKS includes an N-terminal myristoylated domain for membrane binding, a highly conserved MARCKS Homology 2 (MH2) domain, and an effector domain (which is the phosphorylation site). MARCKS can sequester phosphatidylinositol-4, 5-diphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C (PKC), ultimately modulating the immune function. Being expressed mostly in innate immune cells, MARCKS promotes the inflammation-driven migration and adhesion of cells and the secretion of cytokines such as tumor necrosis factor (TNF). From a clinical point of view, MARCKS is overexpressed in patients with schizophrenia and bipolar disorders, while the brain level of MARCKS phosphorylation is associated with Alzheimer's disease. Furthermore, MARCKS is associated with the development and progression of numerous types of cancers. Data in autoimmune diseases are limited to rheumatoid arthritis models in which a connection between MARCKS and the JAK-STAT pathway is mediated by miRNAs. We provide a comprehensive overview of the structure of MARCKS, its molecular characteristics and functions from a biological and pathogenetic standpoint, and will discuss the clinical implications of this pathway.


Asunto(s)
MicroARNs , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Alanina , Humanos , Fosforilación
12.
Autoimmun Rev ; 20(5): 102804, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33727152

RESUMEN

The glycosylation of the fragment crystallizable (Fc) region of immunoglobulins (Ig) is critical for the modulation of antibody effects on inflammation. Moreover, antibody glycosylation may induce pathologic modifications and ultimately contribute to the development of autoimmune diseases. Thanks to progress in the analysis of glycosylation, more data are available on IgG and its subclass structures in the context of autoimmune diseases. In this review, we focused on the impact of Ig glycosylation in autoimmunity, describing how it modulates the immune response and how glycome profiles can be used as biomarkers of disease activity. The analysis of antibody glycosylation demonstrated specific features in human autoimmune and chronic inflammatory conditions, including rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and autoimmune liver diseases, among others. Within the same disease, different patterns are associated with disease severity and treatment options. Future research may increase the information available on the distinct glycome profiles and expand their potential role as biomarkers and as targets for treatment, ultimately favoring an individualized approach.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Autoinmunidad , Glicosilación , Humanos
13.
Hepatology ; 74(2): 835-846, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33462854

RESUMEN

BACKGROUND AND AIMS: Primary biliary cholangitis (PBC) is a prototypical organ-specific autoimmune disease that is mediated by autoreactive T-cell attack and destruction of cholangiocytes. Despite the clear role of autoimmunity in PBC, immune-directed therapies have failed to halt PBC, including biologic therapies effective in other autoimmune diseases. MicroRNA (miRNA) dysregulation is implicated in the pathogenesis (PBC). In the dominant-negative TGF-ß receptor type II (dnTGFßRII) mouse model of PBC, autoreactive CD8 T cells play a major pathogenic role and demonstrate a striking pattern of miRNA down-regulation. Enoxacin is a small molecule fluoroquinolone that enhances miRNA biogenesis, partly by stabilizing the interaction of transactivation response RNA-binding protein with Argonaute (Ago) 2. APPROACH AND RESULTS: We hypothesized that correcting aberrant T-cell miRNA expression with enoxacin in dnTGFßRII mice could modulate autoreactive T-cell function and prevent PBC. Here, we show that liver-infiltrating dnTGFßRII CD8 T cells have significantly decreased levels of the miRNA biogenesis molecules prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and Ago2 along with significantly increased levels of granzyme B and perforin. Enoxacin treatment significantly up-regulated miRNAs in dnTGFßRII CD8 T cells and effectively treated autoimmune cholangitis in dnTGFßRII mice. Enoxacin treatment directly altered T cells both ex vivo and in vitro, resulting in altered memory subset numbers, decreased proliferation, and decreased interferon-γ production. Enoxacin significantly decreased CD8 T-cell expression of the transcription factor, Runx3, and significantly decreased perforin expression at both the mRNA and protein levels. CONCLUSIONS: Enoxacin increases miRNA expression in dnTGFßRII CD8 T cells, reduces CD8 T-cell pathogenicity, and effectively halted progression of autoimmune biliary disease. Targeting the miRNA pathway is a therapeutic approach to autoimmunity that corrects pathological miRNA abnormalities in autoreactive T cells.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Enoxacino/farmacología , Cirrosis Hepática Biliar/tratamiento farmacológico , MicroARNs/biosíntesis , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Enoxacino/uso terapéutico , Humanos , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/inmunología , Ratones , Cultivo Primario de Células , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/inmunología
14.
J Autoimmun ; 113: 102503, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32546343

RESUMEN

Glycosylation of antibodies, particularly in the Fc domain, critically modulate the ability of antibodies to bind to FcRs, maintaining immune quiescence to achieve a finely orchestrated immune response. The removal of sialic acid and galactose residues dramatically alters the physiological function of IgGs, and alterations of Ig glycosylation have been associated with several autoimmune disorders. However, Ig glycosylation has not been extensively studied in autoimmune cholangitis. We applied triple quadruple mass spectroscopy with subsequent multiple reaction monitoring to elucidate the profile, composition and linkage of sugar residues of antibody glycans in patients with primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and healthy controls (HC). Agalactosylated, HexNAc terminated IgG1 glycoforms were enriched in both PBC and PSC. Levels of IgM glycans at site N439 and fucosylated glycans in J chain, were significantly decreased in PBC compared to PSC and HC. PSC patients had decreased bisecting glycoforms and increased biantennary glycoforms on IgA compared to PBC. Importantly, our data demonstrate the association of distinct branching and composition patterns of Ig glycoforms with disease severity and liver cirrhosis, which highlight the importance of glycan biology as a potential mechanism and/or a disease specific signal of inflammation.


Asunto(s)
Autoanticuerpos/metabolismo , Enfermedades Autoinmunes/diagnóstico , Colangitis Esclerosante/diagnóstico , Inmunoglobulina G/metabolismo , Cirrosis Hepática Biliar/diagnóstico , Adulto , Anciano , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/inmunología , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Casos y Controles , Colangitis Esclerosante/sangre , Colangitis Esclerosante/inmunología , Femenino , Glicómica/métodos , Glicosilación , Voluntarios Sanos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Cirrosis Hepática Biliar/sangre , Cirrosis Hepática Biliar/inmunología , Masculino , Persona de Mediana Edad , Polisacáridos/inmunología , Polisacáridos/metabolismo , Índice de Severidad de la Enfermedad
15.
J Autoimmun ; 114: 102506, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32563547

RESUMEN

Coronavirus disease 2019 (COVID-19) has been categorized as evolving in overlapping phases. First, there is a viral phase that may well be asymptomatic or mild in the majority, perhaps 80% of patients. The pathophysiological mechanisms resulting in minimal disease in this initial phase are not well known. In the remaining 20% of cases, the disease may become severe and/or critical. In most patients of this latter group, there is a phase characterized by the hyperresponsiveness of the immune system. A third phase corresponds to a state of hypercoagulability. Finally, in the fourth stage organ injury and failure occur. Appearance of autoinflammatory/autoimmune phenomena in patients with COVID-19 calls attention for the development of new strategies for the management of life-threatening conditions in critically ill patients. Antiphospholipid syndrome, autoimmune cytopenia, Guillain-Barré syndrome and Kawasaki disease have each been reported in patients with COVID-19. Here we present a scoping review of the relevant immunological findings in COVID-19 as well as the current reports about autoinflammatory/autoimmune conditions associated with the disease. These observations have crucial therapeutic implications since immunomodulatory drugs are at present the most likely best candidates for COVID-19 therapy. Clinicians should be aware of these conditions in patients with COVID-19, and these observations should be considered in the current development of vaccines.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Neumonía Viral/inmunología , Inmunidad Adaptativa/genética , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/virología , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Enfermedad Crítica , Síndrome de Liberación de Citoquinas/diagnóstico , Síndrome de Liberación de Citoquinas/terapia , Síndrome de Liberación de Citoquinas/virología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Innata/genética , Inmunización Pasiva/métodos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Masculino , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/terapia , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Factores Sexuales , Sueroterapia para COVID-19
16.
J Immunol ; 204(11): 2887-2899, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295876

RESUMEN

CD137 modulates type 1 diabetes (T1D) progression in NOD mice. We previously showed that CD137 expression in CD4 T cells inhibits T1D, but its expression in CD8 T cells promotes disease development by intrinsically enhancing the accumulation of ß-cell-autoreactive CD8 T cells. CD137 is expressed on a subset of FOXP3+ regulatory CD4 T cells (Tregs), and CD137+ Tregs are the main source of soluble CD137. Soluble CD137 suppresses T cells in vitro by binding to the CD137 ligand (CD137L) upregulated on activated T cells. To further study how the opposing functions of CD137 are regulated, we successfully targeted Tnfsf9 (encoding CD137L) in NOD mice using the CRISPR/Cas9 system (designated NOD.Tnfsf9 -/-). Relative to wild-type NOD mice, T1D development in the NOD.Tnfsf9 -/- strain was significantly delayed, and mice developed less insulitis and had reduced frequencies of ß-cell-autoreactive CD8 T cells. Bone marrow chimera experiments showed that CD137L-deficient hematopoietic cells were able to confer T1D resistance. Adoptive T cell transfer experiments showed that CD137L deficiency on myeloid APCs was associated with T1D suppression. Conversely, lack of CD137L on T cells enhanced their diabetogenic activity. Furthermore, neither CD137 nor CD137L was required for the development and homeostasis of FOXP3+ Tregs. However, CD137 was critical for the in vivo T1D-suppressive activity of FOXP3+ Tregs, suggesting that the interaction between CD137 and CD137L regulates their function. Collectively, our results provide new insights into the complex roles of CD137-CD137L interaction in T1D.


Asunto(s)
Ligando 4-1BB/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Linfocitos T Reguladores/metabolismo , Ligando 4-1BB/genética , Animales , Antígenos CD4/metabolismo , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Transducción de Señal , Linfocitos T Reguladores/inmunología , Quimera por Trasplante , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
17.
J Autoimmun ; 109: 102442, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253068

RESUMEN

The Coronavirus-associated disease, that was first identified in 2019 in China (CoViD-19), is a pandemic caused by a bat-derived beta-coronavirus, named SARS-CoV2. It shares homology with SARS and MERS-CoV, responsible for past outbreaks in China and in Middle East. SARS-CoV2 spread from China where the first infections were described in December 2019 and is responsible for the respiratory symptoms that can lead to acute respiratory distress syndrome. A cytokine storm has been shown in patients who develop fatal complications, as observed in past coronavirus infections. The management includes ventilatory support and broad-spectrum antiviral drugs, empirically utilized, as a targeted therapy and vaccines have not been developed. Based upon our limited knowledge on the pathogenesis of CoViD-19, a potential role of some anti-rheumatic drugs may be hypothesized, acting as direct antivirals or targeting host immune response. Antimalarial drugs, commonly used in rheumatology, may alter the lysosomal proteases that mediates the viral entry into the cell and have demonstrated efficacy in improving the infection. Anti-IL-1 and anti-IL-6 may interfere with the cytokine storm in severe cases and use of tocilizumab has shown good outcomes in a small cohort. Baricitinib has both antiviral and anti-inflammatory properties. Checkpoints inhibitors such as anti-CD200 and anti-PD1 could have a role in the treatment of CoViD-19. Rheumatic disease patients taking immunosuppressive drugs should be recommended to maintain the chronic therapy, prevent infection by avoiding social contacts and pausing immunosuppressants in case of infection. National and international registries are being created to collect data on rheumatic patients with CoViD-19.


Asunto(s)
Terapia Biológica , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/complicaciones , Neumonía Viral/tratamiento farmacológico , Enfermedades Reumáticas/complicaciones , Enfermedades Reumáticas/terapia , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antimaláricos/uso terapéutico , Antirreumáticos/uso terapéutico , Azetidinas/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/prevención & control , Citocinas/inmunología , Humanos , Inmunosupresores/uso terapéutico , Interleucina-1/antagonistas & inhibidores , Interleucina-6/antagonistas & inhibidores , Pandemias/prevención & control , Neumonía Viral/prevención & control , Purinas , Pirazoles , SARS-CoV-2 , Sulfonamidas/uso terapéutico , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Cell Mol Immunol ; 17(2): 178-189, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30874628

RESUMEN

Liver-resident NK cells are distinct from conventional NK cells and play an important role in the maintenance of liver homeostasis. How liver-resident NK cells participate in autoimmune cholangitis remains unclear. Here, we extensively investigated the impact of NK cells in the pathogenesis of autoimmune cholangitis utilizing the well-established dnTGFßRII cholangitis model, NK cell-deficient (Nfil3-/-) mice, adoptive transfer and in vivo antibody-mediated NK cell depletion. Our data demonstrated that disease progression was associated with a significantly reduced frequency of hepatic NK cells. Depletion of NK cells resulted in exacerbated autoimmune cholangitis in dnTGFßRII mice. We further confirmed that the DX5-CD11chi liver-resident NK cell subset colocalized with CD4+ T cells and inhibited CD4+ T cell proliferation. Gene expression microarray analysis demonstrated that liver-resident NK cells had a distinct gene expression pattern consisting of the increased expression of genes involved in negative regulatory functions in the context of the inflammatory microenvironment.


Asunto(s)
Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Asesinas Naturales/inmunología , Cirrosis Hepática Biliar/complicaciones , Cirrosis Hepática Biliar/inmunología , Hígado/inmunología , Traslado Adoptivo/métodos , Animales , Enfermedades Autoinmunes/sangre , Linfocitos B/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD8-positivos/inmunología , Citocinas/sangre , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hibridomas , Cirrosis Hepática Biliar/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética
19.
Front Immunol ; 10: 2566, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787971

RESUMEN

We show here that soluble CD137 (sCD137), the alternately spliced gene product of Tnfsfr9, effectively treats acute type 1 diabetes (T1D) in nonobese diabetic (NOD) mice. sCD137 significantly delayed development of end-stage disease, preserved insulin+ islet beta cells, and prevented progression to end-stage T1D in some mice. We demonstrate that sCD137 induces CD4+ T cell anergy, suppressing antigen-specific T cell proliferation and IL-2/IFN-γ secretion. Exogenous IL-2 reversed the sCD137 anergy effect. sCD137 greatly reduces inflammatory cytokine production by CD8 effector memory T cells, critical mediators of beta cell damage. We demonstrate that human T1D patients have decreased serum sCD137 compared to age-matched controls (as do NOD mice compared to NOD congenic mice expressing a protective Tnfsfr9 allele), that human sCD137 is secreted by regulatory T cells (Tregs; as in mice), and that human sCD137 induces T cell suppression in human T cells. These findings provide a rationale for further investigation of sCD137 as a treatment for T1D and other T cell-mediated autoimmune diseases.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Anergia Clonal/inmunología , Diabetes Mellitus Tipo 1/terapia , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/uso terapéutico , Animales , Ciclo Celular , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Femenino , Memoria Inmunológica , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Interleucina-2/inmunología , Activación de Linfocitos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Transducción de Señal , Subgrupos de Linfocitos T/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
20.
Cell Mol Immunol ; 15(8): 756-767, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29375127

RESUMEN

Autoimmune cholangitis arises from abnormal innate and adaptive immune responses in the liver, and T cells are critical drivers in this process. However, little is known about the regulation of their functional behavior during disease development. We previously reported that mice with T cell-restricted expression of a dominant negative form of transforming growth factor beta receptor type II (dnTGFßRII) spontaneously develop an autoimmune cholangitis that resembles human primary biliary cholangitis (PBC). Adoptive transfer of CD8+ but not CD4+ T cells into Rag1-/- mice reproduced the disease, demonstrating a critical role for CD8+ T cells in PBC pathogenesis. Herein, we used SOMAscan technology to perform proteomic analysis of serum samples from dnTGFßRII and B6 control mice at different ages. In addition, we analyzed CD8 protein profiles after adoptive transfer of splenic CD8+ cells into Rag1-/- recipients. The use of the unique SOMAscan aptamer technology revealed critical and distinct profiles of CD8 cells, which are key to biliary mediation. In total, 254 proteins were significantly increased while 216 proteins were significantly decreased in recipient hepatic CD8+ cells compared to donor splenic CD8+ cells. In contrast to donor splenic CD8+ cells, recipient hepatic CD8+ cells expressed distinct profiles for proteins involved in chemokine signaling, focal adhesion, T cell receptor and natural killer cell-mediated cytotoxicity pathways.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Proteínas Sanguíneas/análisis , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Colangitis/inmunología , Proteómica/métodos , Traslado Adoptivo , Análisis de Varianza , Animales , Enfermedades Autoinmunes/sangre , Colangitis/sangre , Modelos Animales de Enfermedad , Femenino , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA