Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Viruses ; 15(6)2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37376631

RESUMEN

Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is a highly contagious disease of cloven-hoofed livestock that can have severe economic impacts. Control and prevention strategies, including the development of improved vaccines, are urgently needed to effectively control FMD outbreaks in endemic settings. Previously, we employed two distinct strategies (codon pair bias deoptimization (CPD) and codon bias deoptimization (CD)) to deoptimize various regions of the FMDV serotype A subtype A12 genome, which resulted in the development of an attenuated virus in vitro and in vivo, inducing varying levels of humoral responses. In the current study, we examined the versatility of the system by using CPD applied to the P1 capsid coding region of FMDV serotype A subtype, A24, and another serotype, Asia1. Viruses carrying recoded P1 (A24-P1Deopt or Asia1-P1Deopt) exhibited different degrees of attenuation (i.e., delayed viral growth kinetics and replication) in cultured cells. Studies in vivo using a mouse model of FMD demonstrated that inoculation with the A24-P1Deopt and Asia1-P1Deopt strains elicited a strong humoral immune response capable of offering protection against challenge with homologous wildtype (WT) viruses. However, different results were obtained in pigs. While clear attenuation was detected for both the A24-P1Deopt and Asia1-P1Deopt strains, only a limited induction of adaptive immunity and protection against challenge was detected, depending on the inoculated dose and serotype deoptimized. Our work demonstrates that while CPD of the P1 coding region attenuates viral strains of multiple FMDV serotypes/subtypes, a thorough assessment of virulence and induction of adaptive immunity in the natural host is required in each case in order to finely adjust the degree of deoptimization required for attenuation without affecting the induction of protective adaptive immune responses.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Porcinos , Serogrupo , Anticuerpos Antivirales/genética , Fiebre Aftosa/prevención & control , Proteínas de la Cápside/genética , Vacunas Virales/genética
2.
Front Vet Sci ; 9: 1028077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387381

RESUMEN

The foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) is a papain like protease that cleaves the viral polyprotein and several host factors affecting host cell translation and induction of innate immunity. Introduction of Lpro mutations ablating catalytic activity is not tolerated by the virus, however, complete coding sequence deletion or introduction of targeted amino acid substitutions can render viable progeny. In proof-of-concept studies, we have previously identified and characterized FMDV Lpro mutants that are attenuated in cell culture and in animals, while retaining their capacity for inducing a strong adaptive immunity. By using molecular modeling, we have now identified a His residue (H138), that resides outside the substrate binding and catalytic domain, and is highly conserved across serotypes. Mutation of H138 renders possible FMDV variants of reduced virulence in vitro and in vivo. Kinetics studies showed that FMDV A12-LH138L mutant replicates similarly to FMDV A12-wild type (WT) virus in cells that do not offer immune selective pressure, but attenuation is observed upon infection of primary or low passage porcine epithelial cells. Western blot analysis on protein extracts from these cells, revealed that while processing of translation initiation factor eIF-4G was slightly delayed, no degradation of innate sensors or effector molecules such as NF-κB or G3BP2 was observed, and higher levels of interferon (IFN) and IFN-stimulated genes (ISGs) were induced after infection with A12-LH138L as compared to WT FMDV. Consistent with the results in porcine cells, inoculation of swine with this mutant resulted in a mild, or in some cases, no clinical disease but induction of a strong serological adaptive immune response. These results further support previous evidence that Lpro is a reliable target to derive numerous viable FMDV strains that alone or in combination could be exploited for the development of novel FMD vaccine platforms.

3.
Microbiol Resour Announc ; 11(8): e0044522, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35863055

RESUMEN

Complete coding genome sequences of five foot-and-mouth disease virus (FMDV) serotype O strains that were isolated from the field between 2015 and 2016 showed five lineages within the EA-2 topotype circulating in four different regions (northern, western, eastern, and central) of Uganda. The genomic diversity may help in devising FMDV control strategies for Uganda.

4.
Pathogens ; 11(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35631045

RESUMEN

Using georeferenced phylogenetic trees, phylogeography allows researchers to elucidate interactions between environmental heterogeneities and patterns of infectious disease spread. Concordant with the increasing availability of pathogen genetic sequence data, there is a growing need for tools to test epidemiological hypotheses in this field. In this study, we apply tools traditionally used in ecology to elucidate the epidemiology of foot-and-mouth disease virus (FMDV) in Uganda. We analyze FMDV serotype O genetic sequences and their corresponding spatiotemporal metadata from a cross-sectional study of cattle. We apply step selection function (SSF) models, typically used to study wildlife habitat selection, to viral phylogenies to show that FMDV is more likely to be found in areas of low rainfall. Next, we use a novel approach, a resource gradient function (RGF) model, to elucidate characteristics of viral source and sink areas. An RGF model applied to our data reveals that areas of high cattle density and areas near livestock markets may serve as sources of FMDV dissemination in Uganda, and areas of low rainfall serve as viral sinks that experience frequent reintroductions. Our results may help to inform risk-based FMDV control strategies in Uganda. More broadly, these tools advance the phylogenetic toolkit, as they may help to uncover patterns of spread of other organisms for which genetic sequences and corresponding spatiotemporal metadata exist.

5.
J Virol ; 95(24): e0165021, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586864

RESUMEN

Foot-and-mouth disease (FMD) field studies have suggested the occurrence of simultaneous infection of individual hosts by multiple virus strains; however, the pathogenesis of foot-and-mouth disease virus (FMDV) coinfections is largely unknown. In the current study, cattle were experimentally exposed to two FMDV strains of different serotypes (O and A). One cohort was simultaneously infected with both viruses, while additional cohorts were initially infected with FMDV A and subsequently superinfected with FMDV O after 21 or 35 days. Coinfections were confirmed during acute infection, with both viruses concurrently detected in blood, lesions, and secretions. Staggered exposures resulted in overlapping infections as convalescent animals with persistent subclinical FMDV infection were superinfected with a heterologous virus. Staggering virus exposure by 21 days conferred clinical protection in six of eight cattle, which were subclinically infected following the heterologous virus exposure. This effect was transient, as all animals superinfected at 35 days post-initial infection developed fulminant FMD. The majority of cattle maintained persistent infection with one of the two viruses while clearing the other. Analysis of viral genomes confirmed interserotypic recombination events within 10 days in the upper respiratory tract of five superinfected animals from which the dominant genomes contained the capsid coding regions of the O virus and nonstructural coding regions of the A virus. In contrast, there were no dominant recombinant genomes detected in samples from simultaneously coinfected cattle. These findings inculpate persistently infected carriers as potential FMDV mixing vessels in which novel strains may rapidly emerge through superinfection and recombination. IMPORTANCE Foot-and-mouth disease (FMD) is a viral infection of livestock of critical socioeconomic importance. Field studies from areas of endemic FMD suggest that animals can be simultaneously infected by more than one distinct variant of FMD virus (FMDV), potentially resulting in emergence of novel viral strains through recombination. However, there has been limited investigation of the mechanisms of in vivo FMDV coinfections under controlled experimental conditions. Our findings confirmed that cattle could be simultaneously infected by two distinct serotypes of FMDV, with different outcomes associated with the timing of exposure to the two different viruses. Additionally, dominant interserotypic recombinant FMDVs were discovered in multiple samples from the upper respiratory tracts of five superinfected animals, emphasizing the potential importance of persistently infected FMDV carriers as sources of novel FMDV strains.


Asunto(s)
Portador Sano/veterinaria , Coinfección/veterinaria , Coinfección/virología , Virus de la Fiebre Aftosa/patogenicidad , Fiebre Aftosa/virología , Infección Persistente/veterinaria , Animales , Anticuerpos Antivirales/sangre , Portador Sano/virología , Bovinos , Enfermedades de los Bovinos/virología , Virus de la Fiebre Aftosa/genética , Ganado/virología , Infección Persistente/virología , Serogrupo
6.
Mol Ecol ; 30(15): 3815-3825, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008868

RESUMEN

The continued endemicity of foot and mouth disease virus (FMDV) in East Africa has significant implications for livestock production and poverty reduction, yet its complex epidemiology in endemic settings remains poorly understood. Identifying FMDV dispersal routes and drivers of transmission is key to improved control strategies. Environmental heterogeneity and anthropogenic drivers (e.g., demand for animal products) can impact viral spread by influencing host movements. Here, we utilized FMDV serotype O VP1 genetic sequences and corresponding spatiotemporal data in order to (i) infer the recent dispersal history, and (II) investigate the impact of external factors (cattle density, human population density, proximity to livestock markets, and drought) on dispersal velocity, location, and direction of FMDV serotype O in East Africa. We identified statistical evidence of long-distance transmission events, and we found that FMDV serotype O tends to remain circulating in areas of high cattle density, high human population density, and in close proximity to livestock markets. The latter two findings highlight the influence of anthropogenic factors on FMDV serotype O spread in this region. These findings contribute to the understanding of FMDV epidemiology in East Africa and can help guide improved control measures.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , África Oriental/epidemiología , Animales , Bovinos , Brotes de Enfermedades , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/genética , Filogenia , Serogrupo
7.
Front Vet Sci ; 7: 554305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088833

RESUMEN

Inactivated, wild-type foot-and-mouth disease virus (FMDV) vaccines are currently used to control FMD around the world. These traditional FMD vaccines are produced using large quantities of infectious, virulent, wild-type FMD viruses, with the associated risk of virus escape from manufacturing facilities or incomplete inactivation during the vaccine formulation process. While higher quality vaccines produced from wild-type FMDV are processed to reduce non-structural antigens, there is still a risk that small amounts of non-structural proteins may be present in the final product. A novel, antigenically marked FMD-LL3B3D vaccine platform under development by Zoetis, Inc. and the USDA-ARS, consists of a highly attenuated virus platform containing negative antigenic markers in the conserved non-structural proteins 3Dpol and 3B that render resultant vaccines fully DIVA compatible. This vaccine platform allows for the easy exchange of capsid coding sequences to create serotype-specific vaccines. Here we demonstrate the efficacy of the inactivated FMD-LL3B3D-A24 Cruzeiro vaccine in cattle against wild-type challenge with A24 Cruzerio. A proprietary adjuvant system was used to formulate the vaccines that conferred effective protection at low doses while maintaining the DIVA compatibility. In contrast to wild-type FMDV, the recombinant FMD-LL3B3D mutant viruses have been shown to induce no clinical signs of FMD and no shedding of virus in cattle or pigs when inoculated as a live virus. The FMD-LL3B3D vaccine platform, currently undergoing development in the US, provides opportunities for safer vaccine production with full DIVA compatibility in support of global FMDV control and eradication initiatives.

8.
Front Vet Sci ; 7: 475, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851044

RESUMEN

Foot-and-mouth disease (FMD) affects cloven-hoofed domestic and wildlife animals and an outbreak can cause severe losses in milk production, reduction in meat production and death amongst young animals. Several parts of Asia, most of Africa, and the Middle East remain endemic, thus emphasis on improved FMD vaccines, diagnostic assays, and control measures are key research areas. FMD virus (FMDV) populations are quasispecies, which pose serious implications in vaccine design and efficacy where an effective vaccine should include multiple independent neutralizing epitopes to elicit an adequate immune response. Further investigation of the residues that comprise the antigenic determinants of the virus will allow the identification of mutations in outbreak strains that potentially lessen the efficacy of a vaccine. Additionally, of utmost importance in endemic regions, is the accurate diagnosis of FMDV infection for the control and eradication of the disease. To this end, a phage display library was explored to identify FMDV epitopes for recombinant vaccines and for the generation of reagents for improved diagnostic FMD enzyme-linked immunosorbent assays (ELISAs). A naïve semi-synthetic chicken single chain variable fragment (scFv) phage display library i.e., the Nkuku ® library was used for bio-panning against FMD Southern-African Territories (SAT) 1, SAT3, and serotype A viruses. Biopanning yielded one unique scFv against SAT1, two for SAT3, and nine for A22. SAT1 and SAT3 specific scFvs were exploited as capturing and detecting reagents to develop an improved diagnostic ELISA for FMDV. The SAT1 soluble scFv showed potential as a detecting reagent in the liquid phase blocking ELISA (LPBE) as it reacted specifically with a panel of SAT1 viruses, albeit with different ELISA absorbance signals. The SAT1svFv1 had little or no change on its paratope when coated on polystyrene plates whilst the SAT3scFv's paratope may have changed. SAT1 and SAT3 soluble scFvs did not neutralize the SAT1 and SAT3 viruses; however, three of the nine A22 binders i.e., A22scFv1, A22scFv2, and A22scFv8 were able to neutralize A22 virus. Following the generation of virus escape mutants through successive virus passage under scFv pressure, FMDV epitopes were postulated i.e., RGD+3 and +4 positions respectively, proving the epitope mapping potential of scFvs.

9.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581111

RESUMEN

Many RNA viruses encode a proof-reading deficient, low-fidelity RNA-dependent polymerase (RdRp), which generates genetically diverse populations that can adapt to changing environments and thwart antiviral therapies. 3Dpol, the RdRp of the foot-and-mouth disease virus (FMDV), is responsible for replication of viral genomes. The 3Dpol N terminus encodes a nuclear localization signal (NLS) sequence,MRKTKLAPT, important for import of the protein to host nucleus. Previous studies showed that substitutions at residues 18 and 20 of the NLS are defective in proper incorporation of nucleotides and RNA binding. Here, we use a systematic alanine scanning mutagenesis approach to understand the role of individual residues of the NLS in nuclear localization and nucleotide incorporation activities of 3Dpol We identify two residues of 3Dpol NLS, T19 and L21, that are important for the maintenance of enzyme fidelity. The 3Dpol NLS alanine substitutions of T19 and L21 results in aberrant incorporation of nucleoside analogs, conferring a low fidelity phenotype of the enzyme. A molecular dynamics simulation of RNA- and mutagen (RTP)-bound 3Dpol revealed that the T19 residue participates in a hydrogen bond network, including D165 in motif F and R416 at the C terminus of the FMDV 3Dpol and RNA template-primer. Based on these findings and previous studies, we conclude that at least the first six residues of theMRKTKLAPT sequence motif play a vital role in the maintenance of faithful RNA synthesis activity (fidelity) of FMDV 3Dpol, suggesting that the role of the NLS motif in similar viral polymerases needs to be revisited.IMPORTANCE In this study, we employed genetic and molecular dynamics approaches to analyze the role of individual amino acids of the FMDV 3Dpol nuclear localization signal (NLS). The NLS residues were mutated to alanine using a type A full-genome cDNA clone, and the virus progeny was analyzed for defects in growth and in competition with the parental virus. We identified two mutants in 3Dpol, T19A and L21A, that exhibited high rate of mutation, were sensitive to nucleotide analogs, and displayed reduced replicative fitness compared to the parental virus. Using molecular dynamics simulation, we demonstrated that residues T19 and L21 played a role in the structural configuration of the interaction network at the 3Dpol palm subdomain. Cumulatively, our data suggest that the T19 and L21 3Dpol amino acids are important for maintaining the fidelity of the FMDV polymerase and ensuring faithful replication of the FMDV genome.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Genoma Viral , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Señales de Localización Nuclear/química , Nucleótidos , Conformación Proteica , ARN Viral , Replicación Viral
11.
Pathogens ; 9(2)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079312

RESUMEN

Inactivated whole-virus vaccines are widely used for the control of foot-and-mouth disease (FMD). Their production requires the growth of large quantities of virulent FMD virus in biocontainment facilities, which is expensive and carries the risk of an inadvertent release of virus. Attenuated recombinant viruses lacking the leader protease coding region have been proposed as a safer alternative for the production of inactivated FMD vaccines (Uddowla et al., 2012, J Virol 86:11675-85). In addition to the leader deletion, the marker vaccine virus FMDV LL3BPVKV3DYR A24 encodes amino acid substitutions in the viral proteins 3B and 3D that allow the differentiation of infected from vaccinated animals and has been previously shown to be effective in cattle and pigs. In the present study, two groups of six pigs each were inoculated with live FMDV LL3BPVKV3DYR A24 virus either intradermally into the heel bulb (IDHB) or by intra-oropharyngeal (IOP) deposition. The animals were observed for 3 or 5 days after inoculation, respectively. Serum, oral and nasal swabs were collected daily and a thorough postmortem examination with tissue collection was performed at the end of the experiment. None of the animals had any signs of disease or virus shedding. Virus was reisolated from only one serum sample (IDHB group, sample taken on day 1) and one piece of heel bulb skin from the inoculation site of another animal (IDHB group, necropsy on day 3), confirming that FMDV LL3BPVKV3DYR A24 is highly attenuated in pigs.

12.
Front Microbiol ; 11: 610286, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552021

RESUMEN

Foot-and-mouth disease (FMD) is one of the most economically important viral diseases that can affect livestock. In the last 70 years, use of an inactivated whole antigen vaccine has contributed to the eradication of disease from many developed nations. However, recent outbreaks in Europe and Eastern Asia demonstrated that infection can spread as wildfire causing economic and social devastation. Therefore, it is essential to develop new control strategies that could confer early protection and rapidly stop disease spread. Live attenuated vaccines (LAV) are one of the best choices to obtain a strong early and long-lasting protection against viral diseases. In proof of concept studies, we previously demonstrated that "synonymous codon deoptimization" could be applied to the P1 capsid coding region of the viral genome to derive attenuated FMDV serotype A12 strains. Here, we demonstrate that a similar approach can be extended to the highly conserved non-structural P2 and P3 coding regions, providing a backbone for multiple serotype FMDV LAV development. Engineered codon deoptimized P2, P3 or P2, and P3 combined regions were included into the A24Cruzeiro infectious clone optimized for vaccine production, resulting in viable progeny that exhibited different degrees of attenuation in cell culture, in mice, and in the natural host (swine). Derived strains were thoroughly characterized in vitro and in vivo. Our work demonstrates that overall, the entire FMDV genome tolerates codon deoptimization, highlighting the potential of using this technology to derive novel improved LAV candidates.

13.
Prev Vet Med ; 171: 104766, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31541845

RESUMEN

Foot-and-mouth disease virus (FMDV) has a substantial impact on cattle populations in Uganda, causing short- and long-term production losses and hampering local and international trade. Although FMDV has persisted in Uganda for at least 60 years, its epidemiology there and in other endemic settings remains poorly understood. Here, we utilized a large-scale cross-sectional study of cattle to elucidate the dynamics of FMDV spread in Uganda. Sera samples (n = 14,439) from 211 herds were analyzed for non-structural protein reactivity, an indication of past FMDV exposure. Serological results were used to determine spatial patterns, and a Bayesian multivariable logistic regression mixed model was used to identify risk factors for FMDV infection. Spatial clustering of the disease was evident, with higher risk demonstrated near international borders. Additionally, high cattle density, low annual rainfall, and pastoralism were associated with increased likelihood of FMD seropositivity. These results provide insights into the complex epidemiology of FMDV in Uganda and will help inform refined control strategies in Uganda and other FMDV-endemic settings.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Fiebre Aftosa/epidemiología , Animales , Teorema de Bayes , Bovinos , Enfermedades de los Bovinos/sangre , Estudios Transversales , Fiebre Aftosa/sangre , Virus de la Fiebre Aftosa/aislamiento & purificación , Factores de Riesgo , Análisis Espacial , Uganda/epidemiología
14.
Vaccine ; 37(42): 6221-6231, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31493951

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral infection of cloven hooved animals that continues to cause economic disruption in both endemic countries or when introduced into a formally FMD free country. Vaccines that protect against clinical disease and virus shedding are critical to control FMD. The replication deficient human adenovirus serotype 5 (Ad5) vaccine vector expressing empty FMD virus (FMDV) capsid, AdtFMD, is a promising new vaccine platform. With no shedding or spreading of viral vector detected in field trials, this vaccine is very safe to manufacture, as there is no requirement for high containment faciitites. Here, we describe three studies assessing the proportion of animals protected from clinical vesicular disease (foot lesions) following live-FMDV challenge by intradermolingual inoculation at 6 or 9 months following a single vaccination with the commercial AdtFMD vaccine, provisionally licensed for cattle in the United States. Further, we tested the effect of vaccination route (transdermal, intramuscular, subcutaneous) on clinical outcome and humoral immunity. Results demonstrate that a single dose vaccination in cattle with the commercial vaccine vector expressing capsid proteins of the FMDV strain A24 Cruzeiro (Adt.A24), induced protection against clinical FMD at 6 months (100% transdermal, 80% intramuscular, and 60% subcutaneous) that waned by 9 months post-vaccination (33% transdermal and 20% intramuscular). Post-vaccination serum from immunized cattle (all studies) generally contained FMDV specific neutralizing antibodies by day 14. Anti-FMDV antibody secreting cells are detected in peripheral blood early following vaccination, but are absent after 28 days post-vaccination. Thus, the decay in antibody mediated immunity over time is likely a function of FMDV-specific antibody half-life. These data reveal the short time span of anti-FMDV antibody secreting cells (ASCs) and important performance characteristics of needle-free vaccination with a recombinant vectored subunit vaccine for FMDV.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vacunación/veterinaria , Vacunas de Subunidad/inmunología , Vacunas Virales/inmunología , Adenovirus Humanos/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/inmunología , Bovinos , Enfermedades de los Bovinos/virología , Vectores Genéticos , Inmunidad Humoral/inmunología , Vacunas Sintéticas/inmunología
15.
Transbound Emerg Dis ; 66(5): 2011-2024, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31127983

RESUMEN

Here, we report the results of a cross-sectional study designed to monitor the circulation and genetic diversity of foot and mouth disease virus (FMDV) in Uganda between 2014 and 2017. In this study, 13,614 sera and 2,068 oral-pharyngeal fluid samples were collected from cattle and analysed to determine FMDV seroprevalence, circulating serotypes and their phylogenetic relationships. Circulation of FMDV was evidenced by the detection of antibodies against non-structural proteins of FMDV or viral isolations in all districts sampled in Uganda. Sequence analysis revealed the presence of FMDV serotypes A, O, SAT 1 and SAT 2. FMDVs belonging to serotype O, isolated from 21 districts, were the most prevalent and were classified into six lineages within two East African topotypes, namely EA-1 and EA-2. Serotype A viruses belonging to the Africa G-I topotype were isolated from two districts. SAT 1 viruses grouped within topotypes I and IV and SAT 2 viruses within topotypes VII, IV and X were isolated from six and four districts respectively. Phylogenetic analysis of SAT 1 and SAT 2 sequences from cattle clustered with historical sequences from African buffalo, indicating possible interspecies transmission at the wildlife-livestock interface. In some cases, Uganda viruses also shared similarities to viral strains recovered from other regions in East Africa. This 3-year study period provides knowledge about the geographical distribution of FMDV serotypes isolated in Uganda and insights into the genetic diversity of the multiple serotypes circulating in the country. Knowledge of circulating FMDV viruses will assist in antigenic matching studies to devise improved FMDV control strategies with vaccination and vaccine strain selection for Uganda.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Filogenia , Serogrupo , Animales , Animales Salvajes/virología , Búfalos/virología , Bovinos , Estudios Transversales , Fiebre Aftosa/transmisión , Ganado/virología , Estudios Seroepidemiológicos , Uganda/epidemiología
16.
PLoS One ; 14(4): e0210847, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31022193

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious viral disease that severely impacts global food security and is one of the greatest constraints on international trade of animal products. Extensive viral population diversity and rapid, continuous mutation of circulating FMD viruses (FMDVs) pose significant obstacles to the control and ultimate eradication of this important transboundary pathogen. The current study investigated mechanisms contributing to within-host evolution of FMDV in a natural host species (cattle). Specifically, vaccinated and non-vaccinated cattle were infected with FMDV under controlled, experimental conditions and subsequently sampled for up to 35 days to monitor viral genomic changes as related to phases of disease and experimental cohorts. Consensus-level genomic changes across the entire FMDV coding region were characterized through three previously defined stages of infection: early, transitional, and persistent. The overall conclusion was that viral evolution occurred via a combination of two mechanisms: emergence of full-genomic minority haplotypes from within the inoculum super-swarm, and concurrent continuous point mutations. Phylogenetic analysis indicated that individuals were infected with multiple distinct haplogroups that were pre-existent within the ancestral inoculum used to infect all animals. Multiple shifts of dominant viral haplotype took place during the early and transitional phases of infection, whereas few shifts occurred during persistent infection. Overall, this work suggests that the establishment of the carrier state is not associated with specific viral genomic characteristics. These insights into FMDV population dynamics have important implications for virus sampling methodology and molecular epidemiology.


Asunto(s)
Portador Sano/veterinaria , Evolución Molecular , Virus de la Fiebre Aftosa/genética , Fiebre Aftosa/virología , Genoma Viral/genética , Animales , Proteínas de la Cápside/genética , Portador Sano/inmunología , Portador Sano/virología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/aislamiento & purificación , Haplotipos , Estudios Longitudinales , Mutación , Filogenia , ARN Viral/genética , Vacunas Virales/administración & dosificación
17.
Front Vet Sci ; 5: 250, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30370272

RESUMEN

Effective management of foot and mouth disease (FMD) requires diagnostic tests to distinguish between infected and vaccinated animals (DIVA). To address this need, several enzyme-linked immunosorbent assay (ELISA) platforms have been developed, however, these tests vary in their sensitivity and specificity and are very expensive for developing countries. Camelid-derived single-domain antibodies fragments so-called Nanobodies, have demonstrated great efficacy for the development of serological diagnostics. This study describes the development of a novel Nanobody-based FMD 3ABC competitive ELISA, for the serological detection of antibodies against FMD Non-Structural Proteins (NSP) in Uganda cattle herds. This in-house ELISA was validated using more than 600 sera from different Uganda districts, and virus serotype specificities. The evaluation of the performance of the assay demonstrated high diagnostic sensitivity and specificity of 94 % (95 % CI: 88.9-97.2), and 97.67 % (95 % CI: 94.15-99.36) respectively, as well as the capability to detect NSP-specific antibodies against multiple FMD serotype infections. In comparison with the commercial PrioCHECK FMDV NSP-FMD test, there was a strong concordance and high correlation and agreement in the performance of the two tests. This new developed Nanobody based FMD 3ABC competitive ELISA could clearly benefit routine disease diagnosis, the establishment of disease-free zones, and the improvement of FMD management and control in endemically complex environments, such as those found in Africa.

18.
J Vet Diagn Invest ; 30(5): 699-707, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29916768

RESUMEN

The highly contagious foot-and-mouth disease virus (FMDV) afflicts cloven-hoofed animals, resulting in significant costs because of loss of trade and recovery from disease. We developed a sensitive, specific, and rapid competitive ELISA (cELISA) to detect serum antibodies to FMDV. The cELISA utilized a monoclonal blocking antibody specific for a highly conserved FMDV nonstructural 3B epitope, a recombinant mutant FMDV 3ABC coating protein, and optimized format variables including serum incubation for 90 min at 20-25°C. Samples from 16 animals experimentally infected with one FMDV serotype (A, O, Asia, or SAT-1) demonstrated early detection capacity beginning 7 d post-inoculation. All samples from 55 vesicular stomatitis virus antibody-positive cattle and 44 samples from cloven-hoofed animals affected by non-FMD vesicular diseases were negative in the cELISA, demonstrating 100% analytical specificity. The diagnostic sensitivity was 100% against sera from 128 cattle infected with isolates of all FMDV serotypes, emphasizing serotype-agnostic results. Diagnostic specificities of U.S. cattle ( n = 1135) and swine ( n = 207) sera were 99.4% and 100%, respectively. High repeatability and reproducibility were demonstrated with 3.1% coefficient of variation in percent inhibition data and 100% agreement using 2 kit lots and 400 negative control serum samples, with no difference between bench and biosafety cabinet operation. Negative results from vaccinated, uninfected cattle, pig, and sheep sera confirmed the DIVA (differentiate infected from vaccinated animals) capability. This rapid (<3 h), select agent-free assay with high sensitivity and specificity, DIVA capability, and room temperature processing capability will serve as a useful tool in FMDV surveillance, emergency preparedness, response, and outbreak recovery programs.


Asunto(s)
Anticuerpos Antivirales/sangre , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Aftosa/aislamiento & purificación , Fiebre Aftosa/diagnóstico , Proteínas no Estructurales Virales/aislamiento & purificación , Animales , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Epítopos/inmunología , Fiebre Aftosa/virología , Ovinos , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/virología , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/virología
19.
Front Microbiol ; 9: 485, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29616004

RESUMEN

Viral genomes have evolved to maximize their potential of overcoming host defense mechanisms and to induce a variety of disease syndromes. Structurally, a genome of a virus consists of coding and noncoding regions, and both have been shown to contribute to initiation and progression of disease. Accumulated work in picornaviruses has stressed out the importance of the noncoding RNAs, or untranslated 5'- and 3'-regions (UTRs), in both replication and translation of viral genomes. Unsurprisingly, defects in these processes have been reported to cause viral attenuation and affect viral pathogenicity. However, substantial evidence suggests that these untranslated RNAs may influence the outcome of the host innate immune response. This review discusses the involvement of 5'- and 3'-terminus UTRs in induction and regulation of host immunity and its consequences for viral life cycle and virulence.

20.
Virology ; 512: 132-143, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28961454

RESUMEN

The S fragment of the FMDV 5' UTR is predicted to fold into a long stem-loop structure and it has been implicated in virus-host protein interactions. In this study, we report the minimal S fragment sequence required for virus viability and show a direct correlation between the extent of the S fragment deletion mutations and attenuated phenotypes. Furthermore, we provide novel insight into the role of the S fragment in modulating the host innate immune response. Importantly, in an FMDV mouse model system, all animals survive the inoculation with the live A24 FMDV-S4 mutant, containing a 164 nucleotide deletion in the upper S fragment loop, at a dose 1000 higher than the one causing lethality by parental A24 FMDV, indicating that the A24 FMDV-S4 virus is highly attenuated in vivo. Additionally, mice exposed to high doses of live A24 FMDV-S4 virus are fully protected when challenged with parental A24 FMDV virus.


Asunto(s)
Regiones no Traducidas 5'/genética , Virus de la Fiebre Aftosa/fisiología , Inmunidad Innata/fisiología , Replicación Viral/fisiología , Animales , Bovinos , Línea Celular , Cricetinae , Virus de la Fiebre Aftosa/genética , ARN Viral/genética , Eliminación de Secuencia , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...