Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Transl Med ; 13(625): eabg7565, 2021 12 22.
Article En | MEDLINE | ID: mdl-34936383

Chimeric antigen receptor (CAR) T cells induce durable responses in patients with refractory hematological tumors. However, low CAR T cell activity, poor engraftment, or short in-patient persistence can lead to tumor progression or relapse. Furthermore, excessive CAR T cell expansion and activation can result in life-threatening cytokine release syndrome (CRS). Thus, in-patient control of the CAR T cell population is essential. Interleukin-2 (IL-2) is a critical cytokine for T cell proliferation and effector function, but its clinical use is limited by immune-mediated toxicity. Here, we report on an orthogonal IL-2 receptor and ligand system that enables specific in vivo control of CAR T cell expansion and activation, wherein an orthogonal human IL-2 (STK-009) selectively pairs with an orthogonal human IL-2Rß (hoRb) expressed on CAR T cells. STK-009 expands hoRb-expressing CAR T cells in the presence and absence of tumor antigen and maintains the presence of stem cell memory T cells (TSCM) and effector T cells. In preclinical models of human CAR-refractory lymphoma, STK-009 treatment resulted in systemic and intratumoral expansion and activation of hoRb-expressing anti­CD19-CD28ζ CAR T cells (SYNCAR). The orthogonal IL-2 receptor/ligand system delivers complete responses in large subcutaneous lymphomas, even with substantially reduced CAR T cell doses, by selectively expanding and activating CAR T cells in vivo. STK-009 withdrawal allowed normal CAR T cell contraction, thereby limiting CRS induced by tumor antigen­specific T cell activation. These data suggest that the orthogonal IL-2 receptor/ligand system provides the in vivo control necessary to maximize efficacy of CAR T therapies.


Interleukin-2 , Lymphoma , Antigens, CD19 , Humans , Immunotherapy, Adoptive , Lymphoma/therapy , Neoplasm Recurrence, Local/therapy , Receptors, Antigen, T-Cell , T-Lymphocytes
2.
Cancer Res ; 77(16): 4378-4388, 2017 08 15.
Article En | MEDLINE | ID: mdl-28611044

GITR is a T-cell costimulatory receptor that enhances cellular and humoral immunity. The agonist anti-mouse GITR antibody DTA-1 has demonstrated efficacy in murine models of cancer primarily by attenuation of Treg-mediated immune suppression, but the translatability to human GITR biology has not been fully explored. Here, we report the potential utility of MK-4166, a humanized GITR mAb selected to bind to an epitope analogous to the DTA-1 epitope, which enhances the proliferation of both naïve and tumor-infiltrating T lymphocytes (TIL). We also investigated the role of GITR agonism in human antitumor immune responses and report here the preclinical characterization and toxicity assessment of MK-4166, which is currently being evaluated in a phase I clinical study. Expression of human GITR was comparable with that of mouse GITR in tumor-infiltrating Tregs despite being drastically lower in other human TILs and in many human peripheral blood populations. MK-4166 decreased induction and suppressive effects of Tregsin vitro In human TIL cultures, MK-4166 induced phosphorylation of NFκB and increased expression of dual specificity phosphatase 6 (DUSP6), indicating that MK-4166 activated downstream NFκB and Erk signaling pathways. Furthermore, MK-4166 downregulated FOXP3 mRNA in human tumor infiltrating Tregs, suggesting that, in addition to enhancing the activation of TILs, MK-4166 may attenuate the Treg-mediated suppressive tumor microenvironment. Cancer Res; 77(16); 4378-88. ©2017 AACR.


Antibodies/pharmacology , Glucocorticoid-Induced TNFR-Related Protein/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies/immunology , Cell Line, Tumor , Female , Glucocorticoid-Induced TNFR-Related Protein/agonists , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Tumor Microenvironment
3.
PLoS One ; 11(3): e0149603, 2016.
Article En | MEDLINE | ID: mdl-26992172

Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection.


Biofilms , Gram-Negative Bacteria/physiology , Animals , Fishes/metabolism
4.
Neurochem Int ; 79: 88-97, 2014 Dec.
Article En | MEDLINE | ID: mdl-25277075

Several lines of evidence indicate that chronic stress and downregulation of brain-derived neurotrophic factor (BNDF) are the key components of depression pathology. Evidence from animal models of depression demonstrates that chronic stress impairs hippocampal BDNF expression and that antidepressant drug effects correlate with increased BDNF synthesis and activity in the hippocampus. Studies with human carriers of BDNF Met-allele polymorphism link stress vulnerability and risk for depression. The mechanism by which chronic stress downregulates BDNF and promotes depressive-like responses is not established yet. It has been reported that chronic stress mediates alterations in several calcium-related components involved in BDNF synthesis, including CAMKII, CAMKIV and cAMP-response element-binding protein (CREB), and glutamatergic neurotransmission through N-Methyl-D-Aspartate receptors (NMDAR). Treatments with NMDAR antagonists like ketamine modulate glutamate signals, upregulate CREB and BDNF expression, and correct stress-induced cognitive and behavioral alterations. With the increasing interest to develop NMDAR modulators, it is crucial to understand the conditions that lead to depression pathology in order to develop rational therapies aimed at reestablishing proper neuronal function. We present here the current knowledge regarding the relation between chronic stress, BDNF and NMDARs and its implications in depression. We discuss a plausible mechanism where chronic stress induced NMDAR stimulation could lead to dysregulated calcium signaling and decreased BDNF activity. In these circumstances, neurons become vulnerable to the effects of stress, leading to dysfunctional neurotransmission and behavioral alterations. We propose that treatment with NMDAR antagonists may help to return the balance of calcium signaling, promote proper BDNF signaling and correct depressive symptoms.


Brain-Derived Neurotrophic Factor/genetics , Depression/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Depression/psychology , Down-Regulation , Epigenesis, Genetic , Humans , Stress, Psychological/metabolism , Stress, Psychological/psychology
5.
PLoS One ; 7(5): e35398, 2012.
Article En | MEDLINE | ID: mdl-22574119

Historically, marine invertebrates have been a prolific source of unique natural products, with a diverse array of biological activities. Recent studies of invertebrate-associated microbial communities are revealing microorganisms as the true producers of many of these compounds. Inspired by the human microbiome project, which has highlighted the human intestine as a unique microenvironment in terms of microbial diversity, we elected to examine the bacterial communities of fish intestines (which we have termed the fish microbiome) as a new source of microbial and biosynthetic diversity for natural products discovery. To test the hypothesis that the fish microbiome contains microorganisms with unique capacity for biosynthesizing natural products, we examined six species of fish through a combination of dissection and culture-dependent evaluation of intestinal microbial communities. Using isolation media designed to enrich for marine Actinobacteria, we have found three main clades that show taxonomic divergence from known strains, several of which are previously uncultured. Extracts from these strains exhibit a wide range of activities against both gram-positive and gram-negative human pathogens, as well as several fish pathogens. Exploration of one of these extracts has identified the novel bioactive lipid sebastenoic acid as an anti-microbial agent, with activity against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium, and Vibrio mimicus.


Bacteria/isolation & purification , Bacteria/metabolism , Biological Products/metabolism , Drug Discovery , Fishes/microbiology , Metagenome , Animals , Bacteria/classification , Bacteria/growth & development , Biodiversity , Culture Techniques , Intestines/microbiology , Oceans and Seas , Phylogeny
...