Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Technol Cancer Res Treat ; 22: 15330338231199286, 2023.
Article En | MEDLINE | ID: mdl-37774771

BACKGROUND: Possible advantages of magnetic resonance (MR)-guided radiation therapy (MRgRT) for the treatment of brain tumors include improved definition of treatment volumes and organs at risk (OARs) that could allow margin reductions, resulting in limited dose to the OARs and/or dose escalation to target volumes. Recently, hybrid systems integrating a linear accelerator and an magnetic resonance imaging (MRI) scan (MRI-linacs, MRL) have been introduced, that could potentially lead to a fully MRI-based treatment workflow. METHODS: We performed a systematic review of the published literature regarding the adoption of MRL for the treatment of primary or secondary brain tumors (last update November 3, 2022), retrieving a total of 2487 records; after a selection based on title and abstracts, the full text of 74 articles was analyzed, finally resulting in the 52 papers included in this review. RESULTS AND DISCUSSION: Several solutions have been implemented to achieve a paradigm shift from CT-based radiotherapy to MRgRT, such as the management of geometric integrity and the definition of synthetic CT models that estimate electron density. Multiple sequences have been optimized to acquire images with adequate quality with on-board MR scanner in limited times. Various sophisticated algorithms have been developed to compensate the impact of magnetic field on dose distribution and calculate daily adaptive plans in a few minutes with satisfactory dosimetric parameters for the treatment of primary brain tumors and cerebral metastases. Dosimetric studies and preliminary clinical experiences demonstrated the feasibility of treating brain lesions with MRL. CONCLUSIONS: The adoption of an MRI-only workflow is feasible and could offer several advantages for the treatment of brain tumors, including superior image quality for lesions and OARs and the possibility to adapt the treatment plan on the basis of daily MRI. The growing body of clinical data will clarify the potential benefit in terms of toxicity and response to treatment.


Brain Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Particle Accelerators , Magnetic Resonance Spectroscopy , Radiotherapy Dosage
2.
Phys Med ; 91: 28-42, 2021 Nov.
Article En | MEDLINE | ID: mdl-34710789

PURPOSE: The assessment of low-contrast-details is a part of the quality control (QC) program in digital radiology. It generally consists of evaluating the threshold contrast (Cth) detectability details for different-sized inserts, appropriately located in dedicated QC test tools. This work aims to propose a simplified method, based on a statistical model approach for threshold contrast estimation, suitable for different modalities in digital radiology. METHODS: A home-madelow-contrast phantom, made of a central aluminium insert with a step-wedge, was assembled and tested. The reliability and robustness of the method were investigated for Mammography, Digital Radiography, Fluoroscopy and Angiography. Imageswere analysed using our dedicated software developed on Matlab®. TheCth is expressed in the same unit (mmAl) for all studied modalities. RESULTS: This method allows the collection of Cthinformation from different modalities and equipment by different vendors, and it could be used to define typical values. Results are summarized in detail. For 0.5 diameter detail, Cthresults are in the range of: 0.018-0.023 mmAl for 2D mammography and 0.26-0.34 mmAl DR images. For angiographic images, for 2.5 mm diameter detail, the Cths median values are 0.55, 0.4, 0.06, 0.12 mmAl for low dose fluoroscopy, coronary fluorography, cerebral and abdominal DSA, respectively. CONCLUSIONS: The statistical method proposed in this study gives a simple approach for Low-Contrast-Details assessment, and the typical values proposed can be implemented in a QA program for digital radiology modalities.


Mammography , Radiographic Image Enhancement , Phantoms, Imaging , Quality Control , Reproducibility of Results
3.
Tumori ; 107(6): NP41-NP44, 2021 Dec.
Article En | MEDLINE | ID: mdl-33629653

OBJECTIVE: To outline a practical method of performing prostate cancer radiotherapy in patients with bilateral metal hip prostheses with the standard resources available in a modern general hospital. The proposed workflow is based exclusively on magnetic resonance imaging (MRI) to avoid computed tomography (CT) artifacts. CASE DESCRIPTION: This study concerns a 73-year-old man with bilateral hip prostheses with an elevated risk prostate cancer. Magnetic resonance images with assigned electron densities were used for planning purposes, generating a synthetic CT (sCT). Imaging acquisition was performed with an optimized Dixon sequence on a 1.5T MRI scanner. The images were contoured by autosegmentation software, based on an MRI database of 20 patients. The sCT was generated assigning averaged electron densities to each contour. Two volumetric modulated arc therapy plans, a complete arc and a partial one, where the beam entrances through the prostheses were avoided for about 50° on both sides, were compared. The feasibility of matching daily cone beam CT (CBCT) with MRI reference images was also tested by visual evaluations of different radiation oncologists. CONCLUSIONS: The use of magnetic resonance images improved accuracy in targets and organs at risk (OARs) contouring. The complete arc plan was chosen because of 10% lower mean and maximum doses to prostheses with the same planning target volume coverage and OAR sparing. The image quality of the match between performed CBCTs and MRI was considered acceptable. The proposed method seems promising to improve radiotherapy treatments for this complex category of patients.


Heavy Ion Radiotherapy/standards , Hip Prosthesis/statistics & numerical data , Magnetic Resonance Imaging/methods , Metal-on-Metal Joint Prostheses/statistics & numerical data , Prostatic Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Image-Guided/methods , Aged , Artifacts , Humans , Image Processing, Computer-Assisted/methods , Male , Organs at Risk , Prostatic Neoplasms/radiotherapy
4.
Phys Med ; 72: 122-132, 2020 Apr.
Article En | MEDLINE | ID: mdl-32251850

PURPOSE: Validate the skin dose software within the radiation dose index monitoring system NEXO[DOSE]® (Bracco Injeneering S.A., Lausanne, Switzerland). It provides the skin dose distribution in interventional radiology (IR) procedures. METHODS: To determine the skin dose distribution and the Peak Skin Dose (PSD) in IR procedures, the software uses exposure and geometrical parameters taken from the radiation dose structured report and additional information specific to each angiographic system. To test the accuracy of the software, GafChromic® XR-RV3 films, wrapped under a cylindrical PMMA phantom, were irradiated with different setups. Calculations and films results are compared in terms of absolute dose and geometric accuracy, using two angiographic systems (Philips Integris Allura FD20, Siemens AXIOM-ArtisZeego). RESULTS: Calculated and film measured PSD values agree with an average difference of 7% ± 5%. The discrepancies in dose evaluation increase up to 33% in lower dose regions, because the algorithm does not consider the out-of-field scatter contribution of the neighboring fields, which is more significant in these areas. Regarding the geometric accuracy, the differences between the simulated dose spatial distributions and the measured ones are<3 mm (4%) in simple tests and 5 mm (5%) in setups closer to clinical practice. Moreover, similar results are obtained for the two studied angiographic system vendors. CONCLUSIONS: NEXO[DOSE]® provides an accurate skin dose distribution and PSD estimate. It will allow faster and more accurate monitoring of patient follow-up in the future.


Radiation Dosage , Radiology, Interventional/methods , Skin/radiation effects , Software , Angiography , Film Dosimetry , Humans , Phantoms, Imaging , Skin/diagnostic imaging
5.
Phys Med ; 55: 116-126, 2018 Nov.
Article En | MEDLINE | ID: mdl-30473059

PURPOSE: In recent years the use of 68Ga (t1/2 = 67.84 min, ß+: 88.88%) for the labelling of different PET radiopharmaceuticals has significantly increased. This work aims to evaluate the feasibility of the production of 68Ga via the 68Zn(p,n)68Ga reaction by proton irradiation of an enriched zinc solution, using a biomedical cyclotron, in order to satisfy its increasing demand. METHODS: Irradiations of 1.7 Msolution of 68Zn(NO3)2 in 0.2 N HNO3 were conducted with a GE PETtrace cyclotron using a slightly modified version of the liquid target used for the production of fluorine-18. The proton beam energy was degraded to 12 MeV, in order to minimize the production of 67Ga through the68Zn(p,2n)67Ga reaction. The product's activity was measured using a calibrated activity meter and a High Purity Germanium gamma-ray detector. RESULTS: The saturation yield of68Ga amounts to (330 ±â€¯20) MBq/µA, corresponding to a produced activity of68Ga at the EOB of (4.3 ±â€¯0.3) GBq in a typical production run at 46 µA for 32 min. The radionuclidic purity of the68Ga in the final product, after the separation, is within the limits of the European Pharmacopoeia (>99.9%) up to 3 h after the EOB. Radiochemical separation up to a yield not lower than 75% was obtained using an automated purification module. The enriched material recovery efficiency resulted higher than 80-90%. CONCLUSIONS: In summary, this approach provides clinically relevant amounts of68Ga by cyclotron irradiation of a liquid target, as a competitive alternative to the current production through the68Ge/68Ga generators.


Cyclotrons , Gallium Radioisotopes/chemistry , Radiochemistry/instrumentation , Nitric Acid/chemistry , Protons , Zinc Isotopes/chemistry
...