Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125279

RESUMEN

Cardiovascular diseases (CVDs) remain a leading global cause of morbidity and mortality. These diseases have a multifaceted nature being influenced by a multitude of biochemical, genetic, environmental, and behavioral factors. Epigenetic modifications have a crucial role in the onset and progression of CVD. Epigenetics, which regulates gene activity without altering the DNA's primary structure, can modulate cardiovascular homeostasis through DNA methylation, histone modification, and non-coding RNA regulation. The effects of environmental stimuli on CVD are mediated by epigenetic changes, which can be reversible and, hence, are susceptible to pharmacological interventions. This represents an opportunity to prevent diseases by targeting harmful epigenetic modifications. Factors such as high-fat diets or nutrient deficiencies can influence epigenetic enzymes, affecting fetal growth, metabolism, oxidative stress, inflammation, and atherosclerosis. Recent studies have shown that plant-derived bioactive compounds can modulate epigenetic regulators and inflammatory responses, contributing to the cardioprotective effects of diets. Understanding these nutriepigenetic effects and their reversibility is crucial for developing effective interventions to combat CVD. This review delves into the general mechanisms of epigenetics, its regulatory roles in CVD, and the potential of epigenetics as a CVD therapeutic strategy. It also examines the role of epigenetic natural compounds (ENCs) in CVD and their potential as intervention tools for prevention and therapy.


Asunto(s)
Enfermedades Cardiovasculares , Metilación de ADN , Epigénesis Genética , Epigénesis Genética/efectos de los fármacos , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Metilación de ADN/efectos de los fármacos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales
2.
Nutrients ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125387

RESUMEN

The purple carrot cultivar 'Purple Sun' (Daucus carota L.) is characterized by a relevant content of phenolic compounds and anthocyanins, which may play an important role in reducing the risk of chronic diseases and in the treatment of metabolic syndrome. In the present study, the genetic diversity, phytochemical composition, and bioactivities of this outstanding variety were studied for the first time. Genetic analysis by molecular markers estimated the level of genetic purity of this carrot cultivar, whose purple-pigmented roots were used for obtaining the purple carrot ethanol extract (PCE). With the aim to identify specialized metabolites potentially responsible for the bioactivities, the analysis of the metabolite profile of PCE by LC-ESI/LTQ Orbitrap/MS/MS was carried out. LC-ESI/HRMS analysis allowed the assignment of twenty-eight compounds, putatively identified as isocitric acid (1), phenolic acid derivatives (2 and 6), hydroxycinnamic acid derivatives (9, 10, 12-14, 16, 17, 19, 22, and 23), anthocyanins (3-5, 7, 8, 11, and 18), flavanonols (15 and 21), flavonols (20 and 24), oxylipins (25, 26, and 28), and the sesquiterpene 11-acetyloxytorilolone (27); compound 26, corresponding to the primary metabolite trihydroxyoctanoic acid (TriHOME), was the most abundant compound in the LC-ESI/HRMS analysis of the PCE, and hydroxycinnamic acid derivatives followed by anthocyanins were the two most represented groups. The antioxidant activity of PCE, expressed in terms of reactive oxygen species (ROS) level and antioxidant enzymes activity, and its pro-metabolic effect were evaluated. Moreover, the antibacterial activity on Gram (-) and (+) bacterial strains was investigated. An increase in the activity of antioxidant enzymes (SOD, CAT, and GPx), reaching a maximum at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL), was observed. PCE induced an initial decrease in ROS levels at 0.1 and 0.25 mg/mL concentrations, reaching the ROS levels of control at 0.5 mg/mL of PCE with a plateau at higher PCE concentrations (1.25, 2.5, and 5.0 mg/mL). Moreover, significant antioxidant and pro-metabolic effects of PCE on myoblasts were shown by a reduction in ROS content and an increase in ATP production linked to the promotion of mitochondrial respiration. Finally, the bacteriostatic activity of PCE was shown on the different bacterial strains tested, while the bactericidal action of PCE was exclusively observed against the Gram (+) Staphylococcus aureus. The bioactivities of PCE were also investigated from cellular and molecular points of view in colon and hematological cancer cells. The results showed that PCE induces proliferative arrest and modulates the expression of important cell-cycle regulators. For all these health-promoting effects, also supported by initial computational predictions, 'Purple Sun' is a promising functional food and an optimal candidate for pharmaceutical and/or nutraceutical preparations.


Asunto(s)
Antioxidantes , Daucus carota , Fitoquímicos , Extractos Vegetales , Daucus carota/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/análisis , Antocianinas/farmacología , Antocianinas/análisis , Espectrometría de Masas en Tándem , Fenoles/análisis , Fenoles/farmacología , Raíces de Plantas/química
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892183

RESUMEN

Baccharis macraei Hook. & Arn (Asteraceae), commonly known as Vautro, is found in the coastal areas of central-southern Chile, including the industrial zone of Quintero-Puchuncaví, known for the contamination of its soils with heavy metals, which together with other factors generate abiotic stress in plant species, against which they present defensive mechanisms. For this reason, the objective was to evaluate the effect of abiotic stress generated by the proximity of B. macraei to the industrial complex by assessing the physiological and metabolic states reported by the extracts and compounds isolated from the species, as well as the photosynthetic capacity, metal content and production, and antioxidant activity and cytotoxicity against tumorigenic cell lines of the phytoconstituents. To this end, B. macraei was collected at two different distances from the industrial complex, observing that the closer the species is, the greater the concentration of copper in the soil, generating a decrease in the rate of electron transport in situ, but an increase in antioxidant activity with low cytotoxicity. This activity could be due to the presence of flavonoids such as Hispidulin, Cirsimaritina, and Isokaempferida, as well as monoterpenes, oxygenated and non-oxygenated sesquiterpenes identified in this study.


Asunto(s)
Antioxidantes , Baccharis , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Baccharis/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral , Chile , Fotosíntesis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación
6.
J Nat Prod ; 87(4): 1179-1186, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528772

RESUMEN

A comprehensive phytochemical investigation of aerial parts obtained from Centaurea sicula L. led to the isolation of 14 terpenoids (1-14) and nine polyphenols (15-23). The sesquiterpenoid group (1-11) included three structural families, namely, elemanolides (1-6), eudesmanolides (7 and 8), and germacranolides (9-11) with four unreported secondary metabolites (5-8), whose structure has been determined by extensive spectroscopic analysis, including 1D/2D NMR, HR-MS, and chemical conversion. Moreover, an unprecedented alkaloid, named siculamide (24), was structurally characterized, and a possible biogenetic origin was postulated. Inspired by the traditional use of the plant and in the frame of ongoing research on compounds with potential activity on metabolic syndrome, all the isolated compounds were evaluated for their stimulation of glucose uptake, disclosing remarkable activity for dihydrocnicin (10) and the lignan salicifoliol (15).


Asunto(s)
Centaurea , Glucosa , Componentes Aéreos de las Plantas , Componentes Aéreos de las Plantas/química , Centaurea/química , Estructura Molecular , Glucosa/metabolismo , Terpenos/química , Terpenos/aislamiento & purificación , Terpenos/farmacología , Polifenoles/química , Polifenoles/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación
7.
Nutrients ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37447290

RESUMEN

Natural products (NPs), broadly defined as chemicals produced by living organisms including microbes, marine organisms, animals, fungi and plants, are widely used as therapeutic agents for treating diseases and maintaining health and "wellness" [...].


Asunto(s)
Productos Biológicos , Animales , Humanos , Productos Biológicos/uso terapéutico , Hongos/química , Organismos Acuáticos/química
8.
Acta Pharmacol Sin ; 44(11): 2265-2281, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37344563

RESUMEN

The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.


Asunto(s)
Mieloma Múltiple , Parthanatos , Sesquiterpenos , Animales , Humanos , Tubulina (Proteína) , Pez Cebra/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Lactonas/farmacología , Lactonas/uso terapéutico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Línea Celular Tumoral
9.
J Ethnopharmacol ; 311: 116391, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948263

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chamomile (M. chamomilla L.) is an herbaceous plant from family Astereaceae, that has a long history of use in traditional medicine. It has been used as herbal remedies for thousands of years to treat several diseases, including infections, neuropsychiatric, respiratory, gastrointestinal, and liver disorders. Chronic inflammation is involved in the pathogenesis of most infectious and non-infectious diseases and macrophages are considered the major cellular players that drive disease initiation and maintenance. AIM OF THE STUDY: The aim of this study was to evaluate the variation in the chemical profile of the essential oil of M. chamomilla plants collected in three experimental field sites in the Molise region. Additionally, we evaluated the pharmacological mechanism behind the anti-inflammatory effect of M. chamomilla essential oils. MATERIAL AND METHODS: Three essential oils (called GC1, GC2 and GC3) were extracted from aerial parts of M. chamomilla by hydrodistillation and chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS). The essential oils were tested for their ability to modulate pro-inflammatory murine macrophages and human peripheral blood mononuclear cells (PBMCs) functions. RESULTS: The chemical analysis of the samples revealed the presence of a high content of the oxygenated sesquiterpenes that represented more than the half of the entire oils. GC1, GC2 and GC3 essential oils significantly attenuated LPS/IFN-γ-induced inflammation by reducing M1 polarization. In details, they showed significant anti-inflammatory property by inhibiting NO, TNF-α and IL-6 production. These effects were correlated to a suppression of LPS-mediated p65 activation, the critical transactivation subunit for NF-κB transcription factor. Oxidative stress may trigger macrophages activation and elicit strong immune responses. Our study demonstrated that GC1, GC2 and GC3 were highly effective at increasing GCL and HMOX-1 anti-oxidant enzymes expression leading to the rapid scavenging of ROS. The antioxidant activity of these oils was explained throughout the activation of NRF2 signaling pathway. Next, we demonstrated that essential oils were able to reduce CD4+ T cell activation which are also involved in inflammatory processes. CONCLUSIONS: Our data describe for the first time that chamomile essential oils exerted their anti-inflammatory and antioxidant activity by modulating macrophages and CD4+ T cells-mediate immune response.


Asunto(s)
Aceites Volátiles , Humanos , Animales , Ratones , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites Volátiles/análisis , Manzanilla , Leucocitos Mononucleares , Antioxidantes/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/análisis , Inflamación/tratamiento farmacológico
10.
Plants (Basel) ; 12(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36771560

RESUMEN

The aim of this study was to deepen our knowledge on the heritage and traditional uses of some medicinal plants of the Cilento, Vallo di Diano and Alburni National Park (Salerno province) and to evaluate their productive potential, in order to increase possible uses to recover and enhance the territory. Biometric surveys and biomass evaluation were carried out. Two types of aqueous extract were prepared using air-dried samples of six harvested species and tested for anti-germination activity on Lepidium sativum L. Hydrolates were recovered via steam distillation from aromatic species and the chemical-physical characteristics were determined. Historical evidence of industrial activity was collected in the territory of Sanza on Monte Cervati, where lavender essential oil has been distilled in the past century, and characterization of the essential oil components was carried out. The ethnobotanical uses detected mainly concerned traditional medicine and nutritional, ritual, or religious uses. The experimental results highlight that spontaneous medicinal plants could become potential sources of local economic development, with uses not only in the phytotherapeutic sector, but also in others, such as food and agriculture for weed control. Moreover, the evidence derived from industrial archeology could represent a further driving force for the enhancement of the territory's resources.

12.
J Ethnopharmacol ; 303: 115929, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379416

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer originates from cells inside a gland, which begin to grow out of control. In the world, prostate cancer is the most common cancer in the male population. New therapeutic strategies are needed for this tumor which still has a high mortality. A. arborescens leaves and aerial parts have various ethnopharmacological uses such as anti-spasmodic, and their decoctions were used to resolve urticaria, neuralgia and several lung diseases. Often this species has been also used to treat different inflammatory-related diseases such as cancer. AIM OF THE STUDY: In a continuation of our research on essential oils from medicinal plants, we have selected, two essential oils from Artemisia arborescens L. (Compositae), an aromatic shrub widely used in traditional medicine. We evaluated their pro-apototic effect on androgen-sensitive (LNCaP) and androgen-insensitive (DU-145) human prostate cancer cells. In this study, we also evaluated the anti-Signal transducer and transcription factor 3 (STAT-3) activity of both essential oils in the human prostate cancer cell lines, and the treatment with Tumor necrosis factor (TNF)-Related Apoptosis (TRAIL). MATERIALS AND METHODS: The cells were exposed to essential oils for 72 h and cell viability and cell membrane integrity were evaluated. Genomic DNA and the activity of caspase-3 was tested to confirm the cell death for apoptosis. Western blot analysis was employed to evaluate the expression of Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, Hsp70, STAT-3 and SOD proteins. Assays to evaluate reactive oxygen species (ROS) and GSH levels were also performed. RESULTS: The results showed the capacity of two essential oils to activate an apoptotic process increasing the inhibition of Hsp70 and STAT-3 protein expression. In addition, our natural products sensitize LNCaP cells to Tumor necrosis factor (TNF)-Related Apoptosis (TRAIL)-induced apoptosis. CONCLUSIONS: In summary, our study provides a further contribution to the hypothesis of the use of essential oils, from traditional medicinal plants, for the treatment of tumors, and suggests that the combination of our samples with other anti-prostate cancer therapies could be used to affect prostate cancer.


Asunto(s)
Artemisia , Aceites Volátiles , Neoplasias de la Próstata , Masculino , Humanos , Caspasa 3/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Andrógenos/farmacología , Apoptosis , Neoplasias de la Próstata/metabolismo , Factores de Necrosis Tumoral/farmacología , Factores de Necrosis Tumoral/uso terapéutico , Línea Celular Tumoral
13.
Foods ; 11(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359928

RESUMEN

Eugenol and linalool are often the most abundant volatile compounds found in basil (Ocimum basilicum L., Lamiaceae) leaves, and they are interesting for the aroma they provide and for their numerous beneficial bioactivities. Their determination is thus needed for several purposes. In the present study, to avoid the previous isolation of essential oil, the direct solvent extraction is proposed coupled with a transmethylation to convert acyl lipids into fatty acids methyl esters (FAMEs), thus assessing the possible simultaneous analysis of eugenol and linalool with FAMEs by gas chromatography coupled to flame ionization detector (GC-FID). The method has been validated and applied to ten basil leaves samples in which eugenol and linalool were found in mean concentrations of 2.80 ± 0.15 and 1.01 ± 0.04 g kg-1 (dry weight), respectively. FAMEs composition was dominated by linolenic acid (52.1-56.1%) followed by palmitic acid (19.3-22.4%) and linoleic acid (9.6-11.3%). The ratio of n6-polyunsaturated fatty acids (PUFAs)/n3-PUFAs was in the range of 0.17-0.20 in the investigated samples. The proposed method exploits a rapid procedure requiring 40 min, making use of a small amount of solvent and allowing the simultaneous determination of molecules contributing to assess the quality of this worldwide appreciated herb.

14.
Phytochemistry ; 199: 113189, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35427652

RESUMEN

Phytochemical investigation of the aerial parts obtained from the Turkish plant Centaurea kotschyi subsp. persica led to the isolation of nine sesquiterpene lactones belonging to the guaiane class, including the undescribed kotschyols A and B, a monoterpene lactone (daphnauranin E), four known lignans (matairesinol, matairesinoside, arctiin and arctigenin) and an undescribed dihydrobenzofuran neolignan (4-O-glucosylcrataegifin A). The structures of these compounds were defined by spectroscopic analysis, including ECD and 1D/2D NMR, and chemical conversion. Spurred from the traditional use of C. kotschyi subsp. persica and previous reports on the activity of its extracts, the isolated compounds were evaluated for their hypoglycaemic activity disclosing the bioactive components.


Asunto(s)
Centaurea , Sesquiterpenos , Centaurea/química , Hipoglucemiantes/farmacología , Lactonas/química , Estructura Molecular , Fitoquímicos/análisis , Componentes Aéreos de las Plantas/química , Sesquiterpenos/química , Sesquiterpenos de Guayano
15.
Oxid Med Cell Longev ; 2022: 3848084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237379

RESUMEN

Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.


Asunto(s)
Antialérgicos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Ácido Elágico/farmacología , Taninos Hidrolizables/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Sustancias Protectoras/farmacología , Animales , Antialérgicos/metabolismo , Antiinflamatorios/metabolismo , Antineoplásicos/metabolismo , Ácido Elágico/metabolismo , Frutas/química , Frutas/metabolismo , Tracto Gastrointestinal/metabolismo , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Hipoglucemiantes/metabolismo , Fitoterapia/métodos , Extractos Vegetales/metabolismo , Plantas/química , Plantas/metabolismo , Polifenoles/metabolismo , Sustancias Protectoras/metabolismo
16.
Antiviral Res ; 198: 105251, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066016

RESUMEN

Ebola virus (EBOV) is one of the deadliest infective agents whose lethality is linked to the ability to efficiently bypass the host's innate antiviral response. EBOV multifunctional protein VP35 plays a major role in viral replication both as polymerase cofactor and interferon (IFN) antagonist. By hiding the non-self 5'-ppp dsRNA from the cellular receptor RIG-I, VP35 prevents its activation and inhibits IFN-ß production. Blocking VP35-dsRNA interaction and IFN-ß suppression is a validated drug target. We screened a library of natural extracts and found that cynarin inhibits dsRNA-VP35 binding with an IC50 value of 8.5 µM. It reverts the EBOV VP35 inhibition of IFN-ß production, while it does not induce IFN production by itself. Docking experiments suggest that the molecule can bind on the end-capping pocket of VP35 C-terminal Interferon Inhibitory domain (IID), and differential scanning fluorimetry confirmed that cynarin interacts with VP35-IID with a KD of 12 µM. Cynarin was further tested in an EBOV minigenome assay but did not inhibit VP35 polymerase cofactor activity. When evaluated during challenge of IFN-susceptible A549 cells with EBOV isolate derived from the 2014 West African outbreak, cynarin was able to inhibit viral replication with an EC50 value of 9.1 µM, showing no significant cytotoxicity. Our findings show that cynarin blocks EBOV replication by acting directly on VP35 and subverting its IFN antagonism function but not cofactor function, and as such identify the first EBOV inhibitor with this mode of action.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Antivirales/metabolismo , Antivirales/farmacología , Cinamatos , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Humanos , Interferón beta/metabolismo , Interferones/metabolismo , ARN Bicatenario , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral
17.
Nutrients ; 13(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34444931

RESUMEN

Over the centuries, humans have traditionally used garlic (Allium sativum L.) as a food ingredient (spice) and remedy for many diseases. To confirm this, many extensive studies recognized the therapeutic effects of garlic bulbs. More recently, black garlic (BG), made by heat-ageing white garlic bulbs, has increased its popularity in cuisine and traditional medicine around the world, but there is still limited information on its composition and potential beneficial effects. In this study, the metabolite profile of methanol extract of BG (BGE) was determined by high-performance liquid chromatography coupled to tandem mass spectrometry in high-resolution mode. Results allowed to establish that BGE major components were sulfur derivatives, saccharides, peptides, organic acids, a phenylpropanoid derivative, saponins, and compounds typical of glycerophospholipid metabolism. Characterization of the BGE action in cancer cells revealed that antioxidant, metabolic, and hepatoprotective effects occur upon treatment as well as induction of maturation of acute myeloid leukemia cells. These results are interesting from the impact point of view of BG consumption as a functional food for potential prevention of metabolic and tumor diseases.


Asunto(s)
Ajo/química , Leucemia Mieloide Aguda/tratamiento farmacológico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Humanos , Leucemia Mieloide Aguda/patología , Péptidos/análisis , Raíces de Plantas/química , Polisacáridos/análisis , Saponinas/análisis , Especias/análisis , Azufre/análisis , Espectrometría de Masas en Tándem/métodos , Células U937
18.
Pathogens ; 10(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358020

RESUMEN

Increasing attention is being given to the development of innovative formulations to substitute the use of synthetic chemicals to improve agricultural production and resource use efficiency. Alternatives can include biological products containing beneficial microorganisms and bioactive metabolites able to inhibit plant pathogens, induce systemic resistance and promote plant growth. The efficacy of such bioformulations can be increased by the addition of polymers as adjuvants or carriers. Trichoderma afroharzianum T22, Azotobacter chroococcum 76A and 6-pentyl-α-pyrone (6PP; a Trichoderma secondary metabolite) were administrated singularly or in a consortium, with or without a carboxymethyl cellulose-based biopolymer (BP), and tested on sweet basil (Ocimum basilicum L.) grown in a protected greenhouse. The effect of the treatments on basil yield, photosynthetic activity and secondary metabolites production was assessed. Photosynthetic efficiency was augmented by the applications of the bioformulations. The applications to the rhizosphere with BP + 6PP and BP + T22 + 76A increased the total fresh weight of basil by 26.3% and 23.6%, respectively. Untargeted LC-MS qTOF analysis demonstrated that the plant metabolome was significantly modified by the treatments. Quantification of the profiles for the major phenolic acids indicated that the treatment with the T22 + 76A consortium increased rosmarinic acid content by 110%. The use of innovative bioformulations containing microbes, their metabolites and a biopolymer was found to modulate the cultivation of fresh basil by improving yield and quality, thus providing the opportunity to develop farming systems with minimal impact on the environmental footprint from the agricultural production process.

19.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209510

RESUMEN

Phytochemical analysis of the Iranian plant Achillea wilhelmsii led to the isolation of 17 pure secondary metabolites belonging to the classes of sesquiterpenoids and phenolics. Two of these compounds, named wilhemsin (7) and wilhelmsolide (9), are new sesquiterpenoids, and the first shows undescribed structural features. Their structures were elucidated through extensive spectroscopic analysis, mainly based on 1D and 2D NMR, and chemical derivatization. Starting from plant traditional use and previous reports on the activity of the plant extracts, all the pure compounds were evaluated on endpoints related to the treatment of metabolic syndrome. The sesquiterpene hanphyllin (8) showed a selective cholesterol-lowering activity (-12.7% at 30 µM), santoflavone (13) stimulated glucose uptake via the GLUT transporter (+16.2% at 30 µM), while the trimethoxylated flavone salvigenin (14) showed a dual activity in decreasing lipid levels (-22.5% palmitic acid biosynthesis at 30 µM) and stimulating mitochondrial functionality (+15.4% at 30 µM). This study further confirms that, in addition to the antioxidants vitexin, isovitexin, and isoschaftoside, A. wilhelmsii extracts contain molecules that can act at different levels on the metabolic syndrome symptoms.

20.
Plants (Basel) ; 10(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070050

RESUMEN

Vitellaria paradoxa C. F. Gaertn is widely used in African traditional medicine as an anti-inflammatory remedy to treat rheumatism, gastric problems, diarrhea, and dysentery. The phytochemical investigation of the ethyl acetate extract of V. paradoxa stem bark collected in Burkina Faso led to the isolation of eight known and two triterpenes undescribed to date (7 and 10), in the free alcohol form or as acetyl and cinnamyl ester derivatives. The stereostructures of the new compounds were elucidated using HR-ESIMS and 1D and 2D NMR data. The isolated compounds were evaluated in vitro for their inhibitory effect on nitrite levels on murine macrophages J774 stimulated with the lipopolysaccharide (LPS). Among all the compounds tested, lupeol cinnamate (3) and betulinic acid (5) showed a beneficial effect in reducing nitrite levels produced after LPS stimulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA