Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
J Med Chem ; 67(7): 5259-5271, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38530741

A series of activators of GCN2 (general control nonderepressible 2) kinase have been developed, leading to HC-7366, which has entered the clinic as an antitumor therapy. Optimization resulted in improved permeability compared to that of the original indazole hinge binding scaffold, while maintaining potency at GCN2 and selectivity over PERK (protein kinase RNA-like endoplasmic reticulum kinase). The improved ADME properties of this series led to robust in vivo compound exposure in both rats and mice, allowing HC-7366 to be dosed in xenograft models, demonstrating that activation of the GCN2 pathway by this compound leads to tumor growth inhibition.


Protein Serine-Threonine Kinases , eIF-2 Kinase , Humans , Mice , Rats , Animals , Protein Serine-Threonine Kinases/metabolism , eIF-2 Kinase/metabolism , Mice, Inbred C57BL , RNA , Endoplasmic Reticulum/metabolism
2.
Clin Cancer Res ; 29(23): 4870-4882, 2023 12 01.
Article En | MEDLINE | ID: mdl-37733811

PURPOSE: Tumors activate protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK, also called EIF2AK3) in response to hypoxia and nutrient deprivation as a stress-mitigation strategy. Here, we tested the hypothesis that inhibiting PERK with HC-5404 enhances the antitumor efficacy of standard-of-care VEGF receptor tyrosine kinase inhibitors (VEGFR-TKI). EXPERIMENTAL DESIGN: HC-5404 was characterized as a potent and selective PERK inhibitor, with favorable in vivo properties. Multiple renal cell carcinoma (RCC) tumor models were then cotreated with both HC-5404 and VEGFR-TKI in vivo, measuring tumor volume across time and evaluating tumor response by protein analysis and IHC. RESULTS: VEGFR-TKI including axitinib, cabozantinib, lenvatinib, and sunitinib induce PERK activation in 786-O RCC xenografts. Cotreatment with HC-5404 inhibited PERK in tumors and significantly increased antitumor effects of VEGFR-TKI across multiple RCC models, resulting in tumor stasis or regression. Analysis of tumor sections revealed that HC-5404 enhanced the antiangiogenic effects of axitinib and lenvatinib by inhibiting both new vasculature and mature tumor blood vessels. Xenografts that progress on axitinib monotherapy remain sensitive to the combination treatment, resulting in ∼20% tumor regression in the combination group. When tested across a panel of 18 RCC patient-derived xenograft (PDX) models, the combination induced greater antitumor effects relative to monotherapies. In this single animal study, nine out of 18 models responded with ≥50% tumor regression from baseline in the combination group. CONCLUSIONS: By disrupting an adaptive stress response evoked by VEGFR-TKI, HC-5404 presents a clinical opportunity to improve the antitumor effects of well-established standard-of-care therapies in RCC.


Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Carcinoma, Renal Cell/pathology , Axitinib/pharmacology , Axitinib/therapeutic use , Kidney Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use
3.
Pharmaceutics ; 14(10)2022 Oct 19.
Article En | MEDLINE | ID: mdl-36297668

The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of three endoplasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) responsible for regulating protein synthesis and alleviating ER stress. PERK has been implicated in tumorigenesis, cancer cell survival as well metabolic diseases such as diabetes. The structure-based design and optimization of a novel mandelamide-derived pyrrolopyrimidine series of PERK inhibitors as described herein, resulted in the identification of compound 26, a potent, selective, and orally bioavailable compound suitable for interrogating PERK pathway biology in vitro and in vivo, with pharmacokinetics suitable for once-a-day oral dosing in mice.

4.
Bioorg Med Chem Lett ; 43: 128058, 2021 07 01.
Article En | MEDLINE | ID: mdl-33895276

The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of the three endoplasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) that regulates protein synthesis, alleviates cellular ER stress and has been implicated in tumorigenesis and prolonged cancer cell survival. In this study, we report a series of 2-amino-3-amido-5-aryl-pyridines that we have identified as potent, selective, and orally bioavailable PERK inhibitors. Amongst the series studied herein, compound (28) a (R)-2-Amino-5-(4-(2-(3,5-difluorophenyl)-2-hydroxyacetamido)-2-ethylphenyl)-N-isopropylnicotinamide has demonstrated potent biochemical and cellular activity, robust pharmacokinetics and 70% oral bioavailability in mice. Given these data, this compound (28) was studied in the 786-O renal cell carcinoma xenograft model. We observed dose-dependent, statistically significant tumor growth inhibition, supporting the use of this tool compound in additional mechanistic studies.


Drug Discovery , Pyridines/pharmacology , eIF-2 Kinase/antagonists & inhibitors , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyridines/administration & dosage , Pyridines/chemistry , Structure-Activity Relationship , eIF-2 Kinase/metabolism
5.
Biomol NMR Assign ; 13(1): 227-231, 2019 04.
Article En | MEDLINE | ID: mdl-30798456

K-Ras exists in two distinct structural conformations specific to binding of GDP and GTP nucleotides. The cycling between an inactive, GDP-bound state and an active, GTP-bound state is regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. The activated form of K-Ras regulates cell proliferation, differentiation and survival by controlling several downstream signaling pathways. Oncogenic mutations that attenuate the GTPase activity of K-Ras result in accumulation of this key signaling protein in its hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. Mutations at position 12 are the most prevalent in K-Ras associated cancers, hence K-RasG12C has become a recent focus of research for therapeutic intervention. Here we report 1HN, 15N, and 13C backbone and 1H, 13C side-chain resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the active GppNHp-bound form (K-RasG12C-GppNHp), using heteronuclear, multidimensional NMR spectroscopy at 298K. Triple-resonance data assisted the assignments of the backbone 1H, 15N, and 13C resonances of 126 out of 165 non-proline residues. The vast majority of unassigned residues are exchange-broadened beyond detection on the NMR time scale and belong to the P-loop and two flexible Switch regions.


Guanosine Triphosphate/metabolism , Mutant Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Proto-Oncogene Proteins p21(ras)/chemistry , Carbon Isotopes , Humans , Nitrogen Isotopes , Protein Binding , Protein Structure, Secondary , Protons
6.
Biomol NMR Assign ; 12(2): 269-272, 2018 10.
Article En | MEDLINE | ID: mdl-29721757

K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1HN, 15N, and 13C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RASG12C-GDP), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1H-15N correlations have been assigned for all non-proline residues, except for the first methionine residue.


Guanosine Diphosphate/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Mutant Proteins/genetics , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics
7.
Sci Rep ; 7(1): 8427, 2017 08 16.
Article En | MEDLINE | ID: mdl-28814738

Vitamin D regulates many biological processes, but its clinical utility is limited by its hypercalcemic effect. Using a virtual screening platform to search novel chemical probes that activate the vitamin D signaling, we report discovery of novel non-steroidal small-molecule compounds that activate the vitamin D receptor (VDR), but are devoid of hypercalcemia. A lead compound (known as VDR 4-1) demonstrated potent transcriptional activities in a VDR reporter gene assay, and significantly ameliorated cardiac hypertrophy in cell culture studies and in animal models. VDR 4-1 also effectively suppressed secondary hyperparathyroidism in 1α-hydroxylase knockout mice. In contrast to 1α,25-dihydroxyvitamin D3 (1,25-D3 or calcitriol), a naturally occurring VDR agonist, VDR 4-1 therapy even at high doses did not induce hypercalcemia. These findings were accompanied by a lack of upregulation of calcium transport genes in kidney and in the gut providing a mechanism for the lack of hypercalcemia. Furthermore, VDR 4-1 therapy significantly suppressed cardiac hypertrophy and progression to heart failure in both vitamin D deficient and normal mice without inducing significant hypercalcemia. In conclusion, we have identified a unique VDR agonist compound with beneficial effects in mouse models of hyperparathyroidism and heart failure without inducing significant hypercalcemia.


Cardiotonic Agents/adverse effects , Cardiotonic Agents/pharmacology , Hypercalcemia/chemically induced , Receptors, Calcitriol/agonists , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Apoptosis/drug effects , Calcium/metabolism , Cardiomegaly/prevention & control , Cardiotonic Agents/chemistry , Drug Evaluation, Preclinical/methods , Genes, Reporter , High-Throughput Screening Assays/methods , Humans , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Parathyroid Hormone/blood , Rats, Inbred SHR , Receptors, Calcitriol/chemistry , Steroids/chemistry
8.
Sci Rep ; 7(1): 346, 2017 03 23.
Article En | MEDLINE | ID: mdl-28336914

Alterations in sodium flux (INa) play an important role in the pathogenesis of cardiac arrhythmias and may also contribute to the development of cardiomyopathies. We have recently demonstrated a critical role for the regulation of the voltage-gated sodium channel NaV1.5 in the heart by the serum and glucocorticoid regulated kinase-1 (SGK1). Activation of SGK1 in the heart causes a marked increase in both the peak and late sodium currents leading to prolongation of the action potential duration and an increased propensity to arrhythmia. Here we show that SGK1 directly regulates NaV1.5 channel function, and genetic inhibition of SGK1 in a zebrafish model of inherited long QT syndrome rescues the long QT phenotype. Using computer-aided drug discovery coupled with in vitro kinase assays, we identified a novel class of SGK1 inhibitors. Our lead SGK1 inhibitor (5377051) selectively inhibits SGK1 in cultured cardiomyocytes, and inhibits phosphorylation of an SGK1-specific target as well as proliferation in the prostate cancer cell line, LNCaP. Finally, 5377051 can reverse SGK1's effects on NaV1.5 and shorten the action potential duration in induced pluripotent stem cell (iPSC)-derived cardiomyocytes from a patient with a gain-of-function mutation in Nav 1.5 (Long QT3 syndrome). Our data suggests that SGK1 inhibitors warrant further investigation in the treatment of cardiac arrhythmias.


Arrhythmias, Cardiac/therapy , Immediate-Early Proteins/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Humans , Immediate-Early Proteins/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Protein Interaction Mapping , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Zebrafish
9.
J Biol Chem ; 292(17): 7052-7065, 2017 04 28.
Article En | MEDLINE | ID: mdl-28280239

Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at a and d heptad positions. Using NMR chemical-shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-Iα. 15N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation enhancement- and CSP-NMR-guided HADDOCK modeling of the dimer-dimer interface of the heterotetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS·LZ PKG-Iα low-affinity heterotetrameric complex and allow reevaluation of the role(s) of myosin light-chain phosphatase partner polypeptides in regulation of vascular smooth-muscle cell contractility.


Cyclic GMP-Dependent Protein Kinase Type I/chemistry , Leucine Zippers , Myosins/chemistry , Animals , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Mice , Molecular Dynamics Simulation , Muscle, Smooth, Vascular/cytology , Protein Binding , Protein Domains , Protein Multimerization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Ultraviolet , Static Electricity
10.
Biochem Biophys Rep ; 8: 184-191, 2016 Dec.
Article En | MEDLINE | ID: mdl-28955955

Mutations in the human SLC26A4/Pendrin polypeptide (hPDS) cause Pendred Syndrome /DFNB4, syndromic deafness with enlargement of the vestibular aqueduct and low-penetrance goiter. Here we present data on cloning, protein overexpression and purification, refolding, and biophysical characterization of the recombinant hPDS STAS domain lacking its intrinsic variable sequence (STAS-ΔIVS). We report a reproducible protein refolding protocol enabling milligram scale expression and purification of uniformly 15N- and 13C/15N-enriched hPDS STAS-ΔIVS domain suitable for structural characterization by solution NMR. Circular dichroism, one-dimensional 1H, two-dimensional 1H-15N HSQC, and 1H-13C HSQC NMR spectra confirmed the well-folded state of purified hPDS STAS-ΔIVS in solution. Heteronuclear NMR chemical shift perturbation of select STAS-ΔIVS residues by GDP was observed at fast-to-intermediate NMR time scales. Intrinsic tryptophan fluorescence quench experiments demonstrated GDP binding to hPDS STAS-ΔIVS with Kd of 178 µM. These results are useful for structure/function characterization of hPDS STAS, the cytoplasmic subdomain of the congenital deafness protein, pendrin, as well as for studies of other mammalian STAS domains.

11.
J Med Chem ; 58(3): 1466-78, 2015 Feb 12.
Article En | MEDLINE | ID: mdl-25581017

The Krüppel-like family of transcription factors (KLFs) constitute a subfamily of C2H2-type zinc finger proteins with distinct cell-type expression patterns and regulate functional aspects of cell growth and differentiation, activation, or development. KLF10 has been previously shown to critically regulate the acquisition of CD4+CD25+ T regulatory cell differentiation and function, an effect important to the maintenance of self-tolerance, immune suppression, and tumor immunosurveillance. To date, there are no selective pharmacological inhibitors to KLF10. Herein, we report on the discovery of first-in-class small molecule compounds that inhibit the KLF10-DNA interaction interface using computer-aided drug design (CADD) screens of chemical libraries. Interrogation of a "druggable" pocket in the second zinc finger of KLF10 revealed three small molecules, #48, #48-15, and #15-09, with similar scaffolds and binding patterns. Each of these small molecules inhibited KLF10-DNA binding and transcriptional activity, conversion of CD4+CD25- T cells to CD4+CD25+ T regulatory cells, and KLF10 target gene expression. Taken together, these findings support the feasibility of using CADD with functional assays to identify small molecules that target members of the KLF subfamily of transcription factors to regulate biological functions in health and disease. We hope these novel compounds will serve as useful mechanistic probes for KLF10-mediated effects and T regulatory cell biology.


Cell Differentiation/drug effects , Drug Discovery , Early Growth Response Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/antagonists & inhibitors , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/drug effects , Cell Differentiation/immunology , Computer-Aided Design , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Small Molecule Libraries , Structure-Activity Relationship , T-Lymphocytes, Regulatory/immunology
12.
Protein Pept Lett ; 21(7): 639-45, 2014 Jul.
Article En | MEDLINE | ID: mdl-24693955

Protein-protein interactions between the C-terminal domain of Myosin Binding Subunit (MBS) of MLC Phosphatase (MBS(CT180); C-terminal 180 aa) and the N-terminal coiled coil (CC) leucine zipper (LZ) domain of PKGIα, PKG-Iα(1-159) play an important role in the process of Smooth Muscle Cell relaxation. The paucity of three-dimensional structural information for MBS(CT180) prevents an atomic level understanding of the MBS-PKG contractile complex. MBS(CT180) is comprised of three structurally different sub-domains including a non-canonical CC, a CC, and a LZ. Recently we reported polypeptide purification and biophysical characterization of the CC domain and the LZ domain of MBS(CT180) (Sharma et al, Prot Expr Purif 2012). Here we report (1)H, (13)C, (15)N chemical shift assignments of homodimeric CC MBS domain encompassing amino acid residues Asp931-Leu980 using 2D and 3D heteronuclear NMR spectroscopy. Secondary structure analyses deduced from these NMR chemical shift data have identified a contiguous stretch of 36 residues from Phe932 to Ala967 that is involved in the formation of coiled coil α-helical region within CC MBS domain. The N-terminal residue Asp931 and the C-terminally positioned residues Thr968-Ala975, Arg977, and Ser978 adopt nonhelical loop conformations.


Myosin-Light-Chain Phosphatase/chemistry , Protein Subunits/chemistry , Amino Acid Sequence , Binding Sites , Carbon Isotopes/chemistry , Molecular Sequence Data , Nitrogen Isotopes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary
13.
Nat Commun ; 4: 2824, 2013.
Article En | MEDLINE | ID: mdl-24280686

Mechanisms governing the distinct temporal dynamics that characterize post-natal angiogenesis and lymphangiogenesis elicited by cutaneous wounds and inflammation remain unclear. RhoB, a stress-induced small GTPase, modulates cellular responses to growth factors, genotoxic stress and neoplastic transformation. Here we show, using RhoB null mice, that loss of RhoB decreases pathological angiogenesis in the ischaemic retina and reduces angiogenesis in response to cutaneous wounding, but enhances lymphangiogenesis following both dermal wounding and inflammatory challenge. We link these unique and opposing roles of RhoB in blood versus lymphatic vasculatures to the RhoB-mediated differential regulation of sprouting and proliferation in primary human blood versus lymphatic endothelial cells. We demonstrate that nuclear RhoB-GTP controls expression of distinct gene sets in each endothelial lineage by regulating VEZF1-mediated transcription. Finally, we identify a small-molecule inhibitor of VEZF1-DNA interaction that recapitulates RhoB loss in ischaemic retinopathy. Our findings establish the first intra-endothelial molecular pathway governing the phased response of angiogenesis and lymphangiogenesis following injury.


Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lymphangiogenesis , Neovascularization, Pathologic , Retinal Diseases/physiopathology , rhoB GTP-Binding Protein/physiology , Animals , Animals, Newborn , Cell Lineage/genetics , DNA-Binding Proteins , Endothelial Cells/pathology , Endothelial Cells/physiology , Female , Gene Expression Regulation , Inflammation/genetics , Inflammation/physiopathology , Lymphangiogenesis/genetics , Male , Mice , Neovascularization, Pathologic/genetics , Retinal Diseases/genetics , Retinal Diseases/pathology , Transcription Factors , Wound Healing/genetics , Wound Healing/physiology , rhoB GTP-Binding Protein/genetics
14.
Eur J Pharm Sci ; 49(1): 18-26, 2013 Apr 11.
Article En | MEDLINE | ID: mdl-23422689

To search for compounds that disrupt binding of the EWS-FLI1 fusion protein to its cognate targets, we developed a homogeneous high-throughput proximity assay and screened 5200 small molecule compounds. Many well-known DNA-binding chemotherapeutic agents, such as actinomycin D, cisplatin, doxorubicin, daunorubicin, and epirubicin scored in the assay and not surprising also disrupted the binding of other transcription factors. Unexpectedly, we found that Shikonin, a natural product from the root of Lithospermum erythrorhizon, similarly disrupted protein-DNA interactions. Mechanistic studies demonstrated that Shikonin displaces SYBR green from binding to the minor groove of DNA and is able to inhibit topoisomerase mediated DNA relaxation. In cells, Shikonin blocked the binding of EWS-FLI1 to the NR0B1 promoter, and attenuated gene expression. Shikonin rapidly induced G2/M arrest and apoptosis in Ewing sarcoma cells. These results demonstrate that contrary to other purported mechanisms of action, Shikonin is a DNA-binding cytotoxic agent.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , DNA/chemistry , Lithospermum/chemistry , Naphthoquinones/pharmacology , Plant Roots/chemistry , Antineoplastic Agents/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Cell Line, Tumor , DNA/metabolism , DNA Cleavage/drug effects , Dose-Response Relationship, Drug , Humans , Naphthoquinones/chemistry , Structure-Activity Relationship
15.
Mol Endocrinol ; 26(11): 1836-46, 2012 Nov.
Article En | MEDLINE | ID: mdl-23023563

Previously available androgen receptor (AR) antagonists (bicalutamide, flutamide, and nilutamide) have limited activity against AR in prostate cancers that relapse after castration [castration resistant prostate cancer (CRPC)]. However, recent AR competitive antagonists such as MDV3100, generated through chemical modifications to the current AR ligands, appear to have increased activity in CRPC and have novel mechanisms of action. Using pharmacophore models and a refined homology model of the antagonist-liganded AR ligand binding domain, we carried out in silico screens of small molecule libraries and report here on the identification of a series of structurally distinct nonsteroidal small molecule competitive AR antagonists. Despite their unique chemical architectures, compounds representing each of six chemotypes functioned in vitro as pure AR antagonists. Moreover, similarly to MDV3100 and in contrast to previous AR antagonists, these compounds all prevented AR binding to chromatin, consistent with each of the six chemotypes stabilizing a similar AR antagonist conformation. Additional studies with the lead chemotype (chemotype A) showed enhanced AR protein degradation, which was dependent on helix 12 in the AR ligand binding domain. Significantly, chemotype A compounds functioned as AR antagonists in vivo in normal male mice and suppressed AR activity and tumor cell proliferation in human CRPC xenografts. These data indicate that certain ligand-induced structural alterations in the AR ligand binding domain may both impair AR chromatin binding and enhance AR degradation and support continued efforts to develop AR antagonists with unique mechanisms of action and efficacy in CRPC.


Androgen Receptor Antagonists/analysis , Androgen Receptor Antagonists/therapeutic use , Computational Biology/methods , Drug Discovery , Orchiectomy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/surgery , Androgen Receptor Antagonists/chemistry , Androgen Receptor Antagonists/pharmacology , Animals , COS Cells , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chlorocebus aethiops , DNA, Neoplasm/metabolism , Humans , Male , Mice , Models, Biological , Models, Molecular , Prostatic Neoplasms/pathology , Protein Binding/drug effects , Protein Structure, Secondary , Protein Transport/drug effects , Proteolysis/drug effects , Receptors, Androgen/chemistry , Reproducibility of Results , Structural Homology, Protein , Xenograft Model Antitumor Assays
16.
Proc Natl Acad Sci U S A ; 109(26): 10581-6, 2012 Jun 26.
Article En | MEDLINE | ID: mdl-22689977

Elevating Akt activation is an obvious clinical strategy to prevent progressive neuronal death in neurological diseases. However, this endeavor has been hindered because of the lack of specific Akt activators. Here, from a cell-based high-throughput chemical genetic screening, we identified a small molecule SC79 that inhibits Akt membrane translocation, but paradoxically activates Akt in the cytosol. SC79 specifically binds to the PH domain of Akt. SC79-bound Akt adopts a conformation favorable for phosphorylation by upstream protein kinases. In a hippocampal neuronal culture system and a mouse model for ischemic stroke, the cytosolic activation of Akt by SC79 is sufficient to recapitulate the primary cellular function of Akt signaling, resulting in augmented neuronal survival. Thus, SC79 is a unique specific Akt activator that may be used to enhance Akt activity in various physiological and pathological conditions.


Brain Ischemia/metabolism , Cell Death , Cytosol/enzymology , Neurons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Brain Ischemia/enzymology , Enzyme Activation , Mice , Phosphorylation
17.
Protein Expr Purif ; 81(1): 126-135, 2012 Jan.
Article En | MEDLINE | ID: mdl-22005452

Protein-protein interactions between MBS and PKG are mediated by the involvement of C-terminal domain of MBS, MBS(CT180) and N-terminal coiled coil (CC) leucine zipper (LZ) domain of PKG-Iα, PKG-Iα1(-59). MBS(CT180) is comprised of three structurally variant domains of non-CC, CC, and LZ nature. Paucity of three-dimensional structural information of these MBS domains precludes atomic level understanding of MBS-PKG contractile complex structure. Here we present data on cloning, expression, and purification of CC, LZ, and CCLZ domains of MBS(CT180) and their biophysical characterization using size exclusion chromatography (SEC), circular dichroism (CD), and two-dimensional (1)H-(15)N HSQC NMR. The methods as detailed resulted in high level protein expression and high milligram quantities of purified isotopically ((15)N and (13)C) enriched polypeptides. SEC, CD, and (1)H-(15)N HSQC NMR experiments demonstrated that recombinantly expressed MBS CC domain is well folded and exists as a dimer within physiologic pH range, which is supported by our previous findings. The dimerization of CC MBS is likely mediated through formation of coiled coil conformation. In contrast, MBS LZ domain was almost unfolded that exists as non-stable low structured monomer within physiologic pH range. Protein folding and stability of MBS LZ was improved as a function of decrease in pH that adopts a folded, stable, and structured conformation at acidified pH 4.5. SEC and NMR analyses of LZ vs. CCLZ MBS domains indicated that inclusion of CC domain partially improves protein folding of LZ domain.


Myosin-Light-Chain Phosphatase/biosynthesis , Recombinant Proteins/biosynthesis , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Chromatography, Affinity , Chromatography, Gel , Circular Dichroism , Cloning, Molecular , Molecular Sequence Data , Myosin-Light-Chain Phosphatase/chemistry , Myosin-Light-Chain Phosphatase/genetics , Myosin-Light-Chain Phosphatase/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
FEBS J ; 279(3): 420-36, 2012 Feb.
Article En | MEDLINE | ID: mdl-22118659

Enzymatic catalysis and protein signaling are dynamic processes that involve local and/or global conformational changes occurring across a broad range of time scales. (1) H-(15) N relaxation NMR provides a comprehensive understanding of protein backbone dynamics both in the apo (unliganded) and ligand-bound conformations, enabling both fast and slow internal motions of individual amino acid residues to be observed. We recently reported the structure and nucleotide binding properties of the sulfate transporter and anti-sigma factor antagonist (STAS) domain of Rv1739c, a SulP anion transporter protein of Mycobacterium tuberculosis. In the present study, we report (1) H-(15) N NMR backbone dynamics measurements [longitudinal (T(1) ), transverse (T(2) ) and steady-state ({(1) H}-(15) N) heteronuclear NOE] of the Rv1739c STAS domain, in the absence and presence of saturating concentrations of GTP and GDP. Analysis of measured relaxation data and estimated dynamic parameters indicated distinct features differentiating the binding of GTP and GDP to Rv1739c STAS. The 9.55 ns overall rotational correlation time of Rv1739c STAS increased to 10.48 ns in the presence of GTP, and to 13.25 ns in the presence of GDP, indicating significant nucleotide-induced conformational changes. These conformational changes were accompanied by slow time scale (µs to ms) motions in discrete regions of the protein, as reflected by guanine nucleotide-induced changes in relaxation parameters. The observed nucleotide-specific alterations in the relaxation properties of individual STAS residues reflect an increased molecular anisotropy and/or the emergence of conformational equilibria governing functional properties of the STAS domain.


Anion Transport Proteins/chemistry , Bacterial Proteins/chemistry , Guanine Nucleotides/chemistry , Molecular Dynamics Simulation , Mycobacterium tuberculosis/chemistry , Anisotropy , Guanosine Diphosphate , Guanosine Triphosphate , Magnetic Resonance Spectroscopy , Protein Binding , Protein Structure, Tertiary
19.
Cell Physiol Biochem ; 28(3): 407-22, 2011.
Article En | MEDLINE | ID: mdl-22116355

Pendrin shares with nearly all SLC26/SulP anion transporters a carboxy-terminal cytoplasmic segment organized around a Sulfate Transporter and Anti-Sigma factor antagonist (STAS) domain. STAS domains of divergent amino acid sequence exhibit a conserved fold of 4 ß strands interspersed among 5 α helices. The first STAS domain proteins studied were single-domain anti-sigma factor antagonists (anti-anti-σ). These anti-anti-σ indirectly stimulate bacterial RNA polymerase by inactivating inhibitory anti-σ kinases, liberating σ factors to direct specific transcription of target genes or operons. Some STAS domains are nucleotide-binding phosphoproteins or nucleotidases. Others are interaction/transduction modules within multidomain sensors of light, oxygen and other gasotransmitters, cyclic nucleotides, inositol phosphates, and G proteins. Additional multidomain STAS protein sequences suggest functions in sensing, metabolism, or transport of nutrients such as sugars, amino acids, lipids, anions, vitamins, or hydrocarbons. Still other multidomain STAS polypeptides include histidine and serine/threonine kinase domains and ligand-activated transcription factor domains. SulP/SLC26 STAS domains and adjacent sequences interact with other transporters, cytoskeletal scaffolds, and with enzymes metabolizing transported anion substrates, forming putative metabolons. STAS domains are central to membrane targeting of many SulP/SLC26 anion transporters, and STAS domain mutations are associated with at least three human recessive diseases. This review summarizes STAS domain structure and function.


Membrane Transport Proteins/chemistry , Membrane Transport Proteins/physiology , Bacteria/enzymology , DNA-Directed RNA Polymerases/metabolism , Humans , Membrane Transport Proteins/metabolism , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary , Sulfate Transporters
20.
Circulation ; 124(8): 940-50, 2011 Aug 23.
Article En | MEDLINE | ID: mdl-21810665

BACKGROUND: Targeted therapies to stabilize the clinical manifestations and prolong pregnancy in preeclampsia do not exist. Soluble fms-like tyrosine kinase 1 (sFlt-1), an alternatively spliced variant of the vascular endothelial growth factor receptor 1, induces a preeclampsia-like phenotype in experimental models and circulates at elevated levels in human preeclampsia. Removing sFlt-1 may benefit women with very preterm (<32 weeks) preeclampsia. METHODS AND RESULTS: We first show that negatively charged dextran sulfate cellulose columns adsorb sFlt-1 in vitro. In 5 women with very preterm preeclampsia and elevated circulating sFlt-1 levels, we next demonstrate that a single dextran sulfate cellulose apheresis treatment reduces circulating sFlt-1 levels in a dose-dependent fashion. Finally, we performed multiple apheresis treatments in 3 additional women with very preterm (gestational age at admission 28, 30, and 27+4 weeks) preeclampsia and elevated circulating sFlt-1 levels. Dextran sulfate apheresis lowered circulating sFlt-1, reduced proteinuria, and stabilized blood pressure without apparent adverse events to mother and fetus. Pregnancy lasted for 15 and 19 days in women treated twice and 23 days in a woman treated 4 times. In each, there was evidence of fetal growth. CONCLUSIONS: This pilot study supports the hypothesis that extracorporeal apheresis can lower circulating sFlt-1 in very preterm preeclampsia. Further studies are warranted to determine whether this intervention safely and effectively prolongs pregnancy and improves maternal and fetal outcomes in this setting.


Blood Component Removal/methods , Pre-Eclampsia/blood , Pre-Eclampsia/therapy , Vascular Endothelial Growth Factor Receptor-1/blood , Adult , Cellulose/chemistry , Dextran Sulfate/chemistry , Female , Humans , Pilot Projects , Pregnancy , Protein Structure, Tertiary , Solubility , Treatment Outcome , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-1/isolation & purification , Young Adult
...