Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38431846

RESUMEN

Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.


Asunto(s)
Bacteriófagos , Synechococcus , Synechococcus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas Portadoras
2.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376377

RESUMEN

Viral metagenomics has fuelled a rapid change in our understanding of global viral diversity and ecology. Long-read sequencing and hybrid assembly approaches that combine long- and short-read technologies are now being widely implemented in bacterial genomics and metagenomics. However, the use of long-read sequencing to investigate viral communities is still in its infancy. While Nanopore and PacBio technologies have been applied to viral metagenomics, it is not known to what extent different technologies will impact the reconstruction of the viral community. Thus, we constructed a mock bacteriophage community of previously sequenced phage genomes and sequenced them using Illumina, Nanopore and PacBio sequencing technologies and tested a number of different assembly approaches. When using a single sequencing technology, Illumina assemblies were the best at recovering phage genomes. Nanopore- and PacBio-only assemblies performed poorly in comparison to Illumina in both genome recovery and error rates, which both varied with the assembler used. The best Nanopore assembly had errors that manifested as SNPs and INDELs at frequencies 41 and 157 % higher than found in Illumina only assemblies, respectively. While the best PacBio assemblies had SNPs at frequencies 12 and 78 % higher than found in Illumina-only assemblies, respectively. Despite high-read coverage, long-read-only assemblies recovered a maximum of one complete genome from any assembly, unless reads were down-sampled prior to assembly. Overall the best approach was assembly by a combination of Illumina and Nanopore reads, which reduced error rates to levels comparable with short-read-only assemblies. When using a single technology, Illumina only was the best approach. The differences in genome recovery and error rates between technology and assembler had downstream impacts on gene prediction, viral prediction, and subsequent estimates of diversity within a sample. These findings will provide a starting point for others in the choice of reads and assembly algorithms for the analysis of viromes.


Asunto(s)
Bacteriófagos , Nanoporos , Benchmarking , Tecnología , Algoritmos
3.
ISME J ; 17(3): 315-325, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477724

RESUMEN

Lipids play a crucial role in maintaining cell integrity and homeostasis with the surrounding environment. Cosmopolitan marine roseobacter clade (MRC) and SAR11 clade bacteria are unique in that, in addition to glycerophospholipids, they also produce an array of amino acid-containing lipids that are conjugated with beta-hydroxy fatty acids through an amide bond. Two of these aminolipids, the ornithine aminolipid (OL) and the glutamine aminolipid (QL), are synthesized using the O-acetyltransferase OlsA. Here, we demonstrate that OL and QL are present in both the inner and outer membranes of the Gram-negative MRC bacterium Ruegeria pomeroyi DSS-3. In an olsA mutant, loss of these aminolipids is compensated by a concurrent increase in glycerophospholipids. The inability to produce aminolipids caused significant changes in the membrane proteome, with the membrane being less permeable and key nutrient transporters being downregulated while proteins involved in the membrane stress response were upregulated. Indeed, the import of 14C-labelled choline and dimethylsulfoniopropionate, as a proxy for the transport of key marine nutrients across membranes, was significantly impaired in the olsA mutant. Moreover, the olsA mutant was significantly less competitive than the wild type (WT) being unable to compete with the WT strain in co-culture. However, the olsA mutant unable to synthesize these aminolipids is less susceptible to phage attachment. Together, these data reveal a critical role for aminolipids in the ecophysiology of this important clade of marine bacteria and a trade-off between growth and avoidance of bacteriophage attachment.


Asunto(s)
Rhodobacteraceae , Roseobacter , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Roseobacter/genética , Colina/metabolismo , Glicerofosfolípidos/metabolismo
4.
Curr Biol ; 31(14): 3199-3206.e4, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34033748

RESUMEN

Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1-3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6-10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11-13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family ("Naomiviridae"). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment.


Asunto(s)
Bacteriófagos , ADN Viral/química , Genoma Viral , Roseobacter , Bacteriófagos/clasificación , Desoxiuridina/química , Ecosistema , Filogenia , Roseobacter/virología , Timidina/química
5.
Elife ; 102021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33970104

RESUMEN

Dimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule in marine environments with important roles in global sulfur and nutrient cycling. Diverse DMSP lyases in some algae, bacteria, and fungi cleave DMSP to yield gaseous dimethyl sulfide (DMS), an infochemical with important roles in atmospheric chemistry. Here, we identified a novel ATP-dependent DMSP lyase, DddX. DddX belongs to the acyl-CoA synthetase superfamily and is distinct from the eight other known DMSP lyases. DddX catalyses the conversion of DMSP to DMS via a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. DddX is found in several Alphaproteobacteria, Gammaproteobacteria, and Firmicutes, suggesting that this new DMSP lyase may play an overlooked role in DMSP/DMS cycles.


The global sulfur cycle is a collection of geological and biological processes that circulate sulfur-containing compounds through the oceans, rocks and atmosphere. Sulfur itself is essential for life and important for plant growth, hence its widespread use in fertilizers. Marine organisms such as bacteria, algae and phytoplankton produce one particular sulfur compound, called dimethylsulfoniopropionate, or DMSP, in massive amounts. DMSP made in the oceans gets readily converted into a gas called dimethyl sulfide (DMS), which is the largest natural source of sulfur entering the atmosphere. In the air, DMS is converted to sulfate and other by-products that can act as cloud condensation nuclei, which, as the name suggests, are involved in cloud formation. In this way, DMS can influence weather and climate, so it is often referred to as 'climate-active' gas. At least eight enzymes are known to cleave DMSP into DMS gas with a few by-products. These enzymes are found in algae, bacteria and fungi, and are referred to as lyases, for the way they breakdown their target compounds (DMSP, in this case). Recently, researchers have identified some bacteria that produce DMS from DMSP without using known DMSP lyases. This suggests there are other, unidentified enzymes that act on DMSP in nature, and likely contribute to global sulfur cycling. Li, Wang et al. set out to uncover new enzymes responsible for converting the DMSP that marine bacteria produce into gaseous DMS. One new enzyme called DddX was identified and found to belong to a superfamily of enzymes quite separate to other known DMSP lyases. Li, Wang et al. also showed how DddX drives the conversion of DMSP to DMS in a two-step reaction, and that the enzyme is found across several classes of bacteria. Further experiments to characterise the protein structure of DddX also revealed the molecular mechanism for its catalytic action. This study offers important insights into how marine bacteria generate the climatically important gas DMS from DMSP, leading to a better understanding of the global sulfur cycle. It gives microbial ecologists a more comprehensive perspective of these environmental processes, and provides biochemists with data on a family of enzymes not previously known to act on sulfur-containing compounds.


Asunto(s)
Liasas de Carbono-Azufre/química , Psychrobacter/enzimología , Compuestos de Sulfonio/metabolismo , Acilcoenzima A/metabolismo , Adenosina Trifosfato , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Liasas de Carbono-Azufre/genética , Psychrobacter/genética , Psychrobacter/crecimiento & desarrollo , Sulfuros/metabolismo
6.
ISME J ; 15(8): 2440-2453, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33750904

RESUMEN

Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids. Here, we present the identification and characterization of a novel sulfur-containing aminolipid (SAL) in roseobacters. Using high resolution accurate mass spectrometry, a SAL was found in the lipid extract of Ruegeria pomeroyi DSS-3 and Phaeobacter inhibens DSM 17395. Using comparative genomics, transposon mutagenesis and targeted gene knockout, we identified a gene encoding a putative lyso-lipid acyltransferase, designated salA, which is essential for the biosynthesis of this SAL. Multiple sequence analysis and structural modeling suggest that SalA is a novel member of the lysophosphatidic acid acyltransferase (LPAAT) family, the prototype of which is the PlsC acyltransferase responsible for the biosynthesis of the phospholipid phosphatidic acid. SAL appears to play a key role in biofilm formation in roseobacters. salA is widely distributed in Tara Oceans metagenomes and actively expressed in Tara Oceans metatranscriptomes. Our results raise the importance of sulfur-containing membrane aminolipids in marine bacteria.


Asunto(s)
Roseobacter , Ecosistema , Rhodobacteraceae , Roseobacter/genética , Azufre
7.
Phage (New Rochelle) ; 2(4): 214-223, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36159887

RESUMEN

Background: With advances in sequencing technology and decreasing costs, the number of phage genomes that have been sequenced has increased markedly in the past decade. Materials and Methods: We developed an automated retrieval and analysis system for phage genomes (https://github.com/RyanCook94/inphared) to produce the INfrastructure for a PHAge REference Database (INPHARED) of phage genomes and associated metadata. Results: As of January 2021, 14,244 complete phage genomes have been sequenced. The INPHARED data set is dominated by phages that infect a small number of bacterial genera, with 75% of phages isolated on only 30 bacterial genera. There is further bias, with significantly more lytic phage genomes (∼70%) than temperate (∼30%) within our database. Collectively, this results in ∼54% of temperate phage genomes originating from just three host genera. With much debate on the carriage of antibiotic resistance genes and their potential safety in phage therapy, we searched for putative antibiotic resistance genes. Frequency of antibiotic resistance gene carriage was found to be higher in temperate phages than in lytic phages and again varied with host. Conclusions: Given the bias of currently sequenced phage genomes, we suggest to fully understand phage diversity, efforts should be made to isolate and sequence a larger number of phages, in particular temperate phages, from a greater diversity of hosts.

8.
ISME Commun ; 1(1): 58, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37938293

RESUMEN

Megaphages, bacteriophages harbouring extremely large genomes, have recently been found to be ubiquitous, being described from a variety of microbiomes ranging from the animal gut to soil and freshwater systems. However, no complete marine megaphage has been identified to date. Here, using both short and long read sequencing, we assembled >900 high-quality draft viral genomes from water in the English Channel. One of these genomes included a novel megaphage, Mar_Mega_1 at >650 Kb, making it one of the largest phage genomes assembled to date. Utilising phylogenetic and network approaches, we found this phage represents a new family of megaphages. Genomic analysis showed Mar_Mega_1 shares relatively few homologues with its closest relatives, but, as with other megaphages Mar_Mega_1 contained a variety of auxiliary metabolic genes responsible for carbon metabolism and nucleotide biosynthesis, including a NADP-dependent isocitrate dehydrogenase [Idh] and nicotinamide-nucleotide amidohydrolase [PncC], which have not previously been identified in megaphages. Mar_Mega_1 was abundant in a marine virome sample and related phages are widely prevalent in the oceans.

9.
Environ Microbiol ; 21(6): 2112-2128, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884081

RESUMEN

Bacteriophages infecting Escherichia coli (coliphages) have been used as a proxy for faecal matter and water quality from a variety of environments. However, the diversity of coliphages that is present in seawater remains largely unknown, with previous studies largely focusing on morphological diversity. Here, we isolated and characterized coliphages from three coastal locations in the United Kingdom and Poland. Comparative genomics and phylogenetic analysis of phage isolates facilitated the identification of putative new species within the genera Rb69virus and T5virus and a putative new genus within the subfamily Tunavirinae. Furthermore, genomic and proteomic analysis combined with host range analysis allowed the identification of a putative tail fibre that is likely responsible for the observed differences in host range of phages vB_Eco_mar003J3 and vB_Eco_mar004NP2.


Asunto(s)
Colifagos/genética , Agua de Mar/virología , Colifagos/clasificación , Colifagos/aislamiento & purificación , Colifagos/fisiología , Escherichia coli/genética , Escherichia coli/virología , Genoma Viral , Genómica , Especificidad del Huésped , Myoviridae/clasificación , Myoviridae/genética , Myoviridae/aislamiento & purificación , Myoviridae/fisiología , Filogenia , Polonia , Proteómica , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación , Siphoviridae/fisiología , Reino Unido
10.
Artículo en Inglés | MEDLINE | ID: mdl-30801062

RESUMEN

The diversity of viruses in slurries from dairy farming remains largely uncharacterized. Here we report viral diversity found in cattle slurry from a dairy farm in the East Midlands in the United Kingdom. The same slurry tank was sampled in three consecutive years, and the viral fraction was isolated and sequenced.

11.
Environ Microbiol Rep ; 11(3): 448-455, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30809954

RESUMEN

Bacteriophage possess a variety of auxiliary metabolic genes of bacterial origin. These proteins enable them to maximize infection efficiency, subverting bacterial metabolic processes for the purpose of viral genome replication and synthesis of the next generation of virion progeny. Here, we examined the enzymatic activity of a cyanophage MazG protein - a putative pyrophosphohydrolase previously implicated in regulation of the stringent response via reducing levels of the central alarmone molecule (p)ppGpp. We demonstrate, however, that the purified viral MazG shows no binding or hydrolysis activity against (p)ppGpp. Instead, dGTP and dCTP appear to be the preferred substrates of this protein, consistent with a role preferentially hydrolysing deoxyribonucleotides from the high GC content host Synechococcus genome. This showcases a new example of the fine-tuned nature of viral metabolic processes.


Asunto(s)
Bacteriófagos/enzimología , Desoxirribonucleótidos/metabolismo , Pirofosfatasas/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/clasificación , Bacteriófagos/genética , Composición de Base , Dominio Catalítico , Genoma Bacteriano/genética , Hidrólisis , Filogenia , Pirofosfatasas/química , Pirofosfatasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Synechococcus/clasificación , Synechococcus/enzimología , Synechococcus/genética , Synechococcus/virología , Proteínas Virales/química , Proteínas Virales/genética
12.
ISME J ; 13(1): 39-49, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108306

RESUMEN

Marine microorganisms employ multiple strategies to cope with transient and persistent nutrient limitation, one of which, for alleviating phosphorus (P) stress, is to substitute membrane glycerophospholipids with non-P containing surrogate lipids. Such a membrane lipid remodelling strategy enables the most abundant marine phytoplankton and heterotrophic bacteria to adapt successfully to nutrient scarcity in marine surface waters. An important group of non-P lipids, the aminolipids which lack a diacylglycerol backbone, are poorly studied in marine microbes. Here, using a combination of genetic, lipidomics and metagenomics approaches, we reveal for the first time the genes (glsB, olsA) required for the formation of the glutamine-containing aminolipid. Construction of a knockout mutant in either glsB or olsA in the model marine bacterium Ruegeria pomeroyi DSS-3 completely abolished glutamine lipid production. Moreover, both mutants showed a considerable growth cost under P-deplete conditions and the olsA mutant, that is unable to produce the glutamine and ornithine aminolipids, ceased to grow under P-deplete conditions. Analysis of sequenced microbial genomes show that glsB is primarily confined to the Rhodobacteraceae family, which includes the ecologically important marine Roseobacter clade that are key players in the marine sulphur and nitrogen cycles. Analysis of the genes involved in glutamine lipid biosynthesis in the Tara ocean metagenome dataset revealed the global occurrence of glsB in marine surface waters and a positive correlation between glsB abundance and N* (a measure of the deviation from the canonical Redfield ratio), suggesting glutamine lipid plays an important role in the adaptation of marine Rhodobacteraceae to P limitation.


Asunto(s)
Glutamina/metabolismo , Lípidos/biosíntesis , Fósforo/metabolismo , Rhodobacteraceae/genética , Organismos Acuáticos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Procesos Heterotróficos , Metagenoma , Metagenómica , Mutación , Ciclo del Nitrógeno , Fitoplancton
13.
Genome Biol Evol ; 10(1): 72-76, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29272407

RESUMEN

Despite being more abundant and having smaller genomes than their bacterial host, relatively few bacteriophages have had their genomes sequenced. Here, we isolated 14 bacteriophages from cattle slurry and performed de novo genome sequencing, assembly, and annotation. The commonly used marker genes polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest these genes are carried as a mechanism to modify DNA in order to protect these bacteriophages against host endonucleases.


Asunto(s)
Bacteriófagos/genética , Bovinos/virología , Genómica/métodos , Animales , Variación Genética , Genoma Viral , Filogenia
14.
PeerJ ; 4: e2055, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27280068

RESUMEN

Bacteriophages are the most abundant biological entities on the planet, playing crucial roles in the shaping of bacterial populations. Phages have smaller genomes than their bacterial hosts, yet there are currently fewer fully sequenced phage than bacterial genomes. We assessed the suitability of Illumina technology for high-throughput sequencing and subsequent assembly of phage genomes. In silico datasets reveal that 30× coverage is sufficient to correctly assemble the complete genome of ~98.5% of known phages, with experimental data confirming that the majority of phage genomes can be assembled at 30× coverage. Furthermore, in silico data demonstrate it is possible to co-sequence multiple phages from different hosts, without introducing assembly errors.

15.
FEMS Microbiol Lett ; 363(15)2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27338950

RESUMEN

Marine viruses are the most abundant biological entity in the oceans, the majority of which infect bacteria and are known as bacteriophages. Yet, the bulk of bacteriophages form part of the vast uncultured dark matter of the microbial biosphere. In spite of the paucity of cultured marine bacteriophages, it is known that marine bacteriophages have major impacts on microbial population structure and the biogeochemical cycling of key elements. Despite the ecological relevance of marine bacteriophages, there are relatively few isolates with complete genome sequences. This minireview focuses on knowledge gathered from these genomes put in the context of viral metagenomic data and highlights key advances in the field, particularly focusing on genome structure and auxiliary metabolic genes.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Metagenómica , Océanos y Mares , Agua de Mar/microbiología , Bacterias/virología , Filogenia
16.
PLoS One ; 10(7): e0132642, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26177354

RESUMEN

Viruses have been suggested to be the largest source of genetic diversity on Earth. Genome sequencing and metagenomic surveys reveal that novel genes with unknown functions are abundant in viral genomes. Yet few observations exist for the processes and frequency by which these genes are gained and lost. The surface waters of marine environments are dominated by marine picocyanobacteria and their co-existing viruses (cyanophages). Recent genome sequencing of cyanophages has revealed a vast array of genes that have been acquired from their cyanobacterial hosts. Here, we re-sequenced the cyanophage S-PM2 genome after 10 years of near continuous passage through its marine Synechococcus host. During this time a spontaneous mutant (S-PM2d) lacking 13% of the S-PM2 ORFs became dominant in the cyanophage population. These ORFs are found at one loci and are not homologous to any proteins in any other sequenced organism (ORFans). We demonstrate a fitness cost to S-PM2WT associated with possession of these ORFs under standard laboratory growth. Metagenomic surveys reveal these ORFs are present in various aquatic environments, are likely of cyanophage origin and appear to be enriched in environments from the extremes of salinity (freshwater and hypersaline). We posit that these ORFs contribute to the flexible gene content of cyanophages and offer a distinct fitness advantage in freshwater and hypersaline environments.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Synechococcus/virología , Secuencia de Bases , Eliminación de Gen , Aptitud Genética , Especificidad del Huésped , Sistemas de Lectura Abierta , Filogenia , Sintenía , Microbiología del Agua
17.
ISME J ; 6(3): 629-37, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21938021

RESUMEN

Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 µM but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2-20 µM) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 µM) and ammonium (20 µM). However, nifH transcript levels were below detection at ammonium concentrations >20 µM. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 µM. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Proteínas de Unión al ADN/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Bacterianas/genética , Cianobacterias/genética , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Glutamato-Amoníaco Ligasa/genética , Nitratos/metabolismo , Nitritos/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno , Compuestos Nitrosos , Compuestos de Amonio Cuaternario/farmacología , Tiazolidinas , Factores de Transcripción/genética , Urea/metabolismo
18.
FEMS Microbiol Ecol ; 69(3): 425-38, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19583788

RESUMEN

Using a polyphasic approach, we examined the presence of Archaea in the Gulf of Aqaba, a warm marine ecosystem, isolated from major ocean currents and subject to pronounced seasonal changes in hydrography. Catalyzed reported deposition FISH analyses showed that Archaea make up to >20% of the prokaryotic community in the Gulf. A spatial separation between the two major phyla of Archaea was observed during summer stratification. Euryarchaeota were found exclusively in the upper 200 m, whereas Crenarchaeota were present in greater numbers in layers below the summer thermocline. 16S rRNA gene-based denaturing gradient gel electrophoresis confirmed this depth partitioning and revealed further diversity of Crenarchaeota and Euryarchaeota populations along depth profiles. Phylogenetic analysis showed pelagic Crenarchaeota and Euryarchaeota to differ from coral-associated Archaea from the Gulf, forming distinct clusters within the Marine Archaea Groups I and II. Endsequencing of fosmid libraries of environmental DNA provided a tentative identification of some members of the archaeal community and their role in the microbial community of the Gulf. Incorporation studies of radiolabeled leucine and bicarbonate in the presence of different inhibitors suggest that the archaeal community participates in autotrophic CO(2) uptake and contributes little to the heterotrophic activity.


Asunto(s)
Crenarchaeota/genética , Euryarchaeota/genética , Microbiología del Agua , Crenarchaeota/clasificación , ADN de Archaea/genética , Euryarchaeota/clasificación , Genes de ARNr , Hibridación Fluorescente in Situ , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA