Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 46: 102097, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418599

RESUMEN

Lipid nitroalkenes - nitro-fatty acids (NO2-FAs) are formed in vivo via the interaction of reactive nitrogen species with unsaturated fatty acids. The resulting electrophilic NO2-FAs play an important role in redox homeostasis and cellular stress response. This study investigated the physicochemical properties and reactivity of two NO2-FAs: 9/10-nitrooleic acid (1) and its newly prepared 1-monoacyl ester, (E)-2,3-hydroxypropyl 9/10-nitrooctadec-9-enoate (2), both synthesized by a direct radical nitration approach. Compounds 1 and 2 were investigated in an aqueous medium and after incorporation into lipid nanoparticles prepared from 1-monoolein, cubosomes 1@CUB and 2@CUB. Using an electrochemical analysis and LC-MS, free 1 and 2 were found to be unstable under acidic conditions, and their degradation occurred in an aqueous environment within a few minutes or hours. This degradation was associated with the production of the NO radical, as confirmed by fluorescence assay. In contrast, preparations 1@CUB and 2@CUB exhibited a significant increase in the stability of the loaded 1 and 2 up to several days to weeks. In addition to experimental data, density functional theory-based calculation results on the electronic structure and structural variability (open and closed configuration) of 1 and 2 were obtained. Finally, experiments with a human HaCaT keratinocyte cell line demonstrated the ability of 1@CUB and 2@CUB to penetrate through the cytoplasmic membrane and modulate cellular pathways, which was exemplified by the Keap1 protein level monitoring. Free 1 and 2 and the cubosomes prepared from them showed cytotoxic effect on HaCaT cells with IC50 values ranging from 1 to 8 µM after 24 h. The further development of cubosomal preparations with embedded electrophilic NO2-FAs may not only contribute to the field of fundamental research, but also to their application using an optimized lipid delivery vehicle.


Asunto(s)
Ácidos Grasos , Óxido Nítrico , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Óxido Nítrico/metabolismo , Nitrocompuestos
2.
Talanta ; 165: 466-473, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153284

RESUMEN

Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400µM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and <6% (n=5, 2µM glucose), respectively. Newly devised sparked Cu/Ni graphite SPEs enable glucose sensing with distinct advantages over existing glucose chemical sensors in terms of cost, fabrication simplicity, disposability, and adaptation of green methods in sensor's development.


Asunto(s)
Técnicas Biosensibles/métodos , Cobre/química , Técnicas Electroquímicas/métodos , Electrodos , Glucosa/análisis , Grafito/química , Níquel/química , Humanos , Límite de Detección
3.
Talanta ; 122: 115-21, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24720971

RESUMEN

Electrochemically pretreated carbon fiber microelectrode was used to develop a simple, fast and sensitive HPLC-ECD method for the determination of brominated phenols. In addition to simple mono-, di- and tri-bromophenols (4-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, 2,4,6-tri-bromophenol) the possibility of electrochemical detection of 3,3',5,5'-tetrabromobisphenol A in oxidation mode is reported for the first time. The isocratic separation was achieved within 14 min using ternary mobile phase consisting of 50mM-phosphate buffer (pH 3.5), acetonitrile and methanol (35/15/50, v/v), and detection potential of E=+1450 mV (vs. Ag/AgCl). The carbon fiber microelectrode permitted to use high anodic potentials (up to +1800 mV vs. Ag/AgCl), the optimum analytical response was achieved at +1450 mV vs. Ag/AgCl. The limits of detection (LOD) for the studied analytes were within the range of 1.8-56.6 ng mL(-1). The developed method was applied to determination of brominated phenols in spiked water samples. Furthermore, after simple extraction with methyl tert-butyl ether, it was possible to quantify tetrabromobisphenol A (TBBA) in a piece of CRT monitor plastic casing. The found amount of TBBA was 10.22 mg kg(-1) (±0.43).


Asunto(s)
Carbono/química , Técnicas Electroquímicas , Fenoles/análisis , Bifenilos Polibrominados/análisis , Fibra de Carbono , Cromatografía Líquida de Alta Presión/métodos , Técnicas Electroquímicas/métodos , Microelectrodos , Peso Molecular
4.
ScientificWorldJournal ; 2012: 295802, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22654586

RESUMEN

The paper focuses on the analysis and detection of electroactive compounds using high-performance liquid chromatography (HPLC) combined with electrochemical detection (EC). The fabrication and utilization of electrochemically treated carbon fiber microelectrodes (CFMs) as highly sensitive amperometric detectors in HPLC are described. The applied pretreatment procedure is beneficial for analytical characteristics of the sensor as demonstrated by analysis of the model set of phenolic acids. The combination of CFM with separation power of HPLC technique allows for improved detection limits due to unique electrochemical properties of carbon fibers. The CFM proved to be a promising tool for amperometric detection in liquid chromatography.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Electroquímica/métodos , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...