Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Phys Med Biol ; 69(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38640918

Objective. In this experimental work we compared the determination of absorbed dose to water using four ionization chambers (ICs), a PTW-34045 Advanced Markus, a PTW-34001 Roos, an IBA-PPC05 and a PTW-30012 Farmer, irradiated under the same conditions in one continuous- and in two pulsed-scanned proton beams.Approach. The ICs were positioned at 2 cm depth in a water phantom in four square-field single-energy scanned-proton beams with nominal energies between 80 and 220 MeV and in the middle of 10 × 10 × 10 cm3dose cubes centered at 10 cm or 12.5 cm depth in water. The water-equivalent thickness (WET) of the entrance window and the effective point of measurement was considered when positioning the plane parallel (PP) ICs and the cylindrical ICs, respectively. To reduce uncertainties, all ICs were calibrated at the same primary standards laboratory. We used the beam quality (kQ) correction factors for the ICs under investigation from IAEA TRS-398, the newly calculated Monte Carlo (MC) values and the anticipated IAEA TRS-398 updated recommendations.Main results. Dose differences among the four ICs ranged between 1.5% and 3.7% using both the TRS-398 and the newly recommendedkQvalues. The spread among the chambers is reduced with the newlykQvalues. The largest differences were observed between the rest of the ICs and the IBA-PPC05 IC, obtaining lower dose with the IBA-PPC05.Significance. We provide experimental data comparing different types of chambers in different proton beam qualities. The observed dose differences between the ICs appear to be related to inconsistencies in the determination of thekQvalues. For PP ICs, MC studies account for the physical thickness of the entrance window rather than the WET. The additional energy loss that the wall material invokes is not negligible for the IBA-PPC05 and might partially explain the lowkQvalues determined for this IC. To resolve this inconsistency and to benchmark MC values,kQvalues measured using calorimetry are needed.


Radiometry , Radiometry/instrumentation , Radiometry/methods , Monte Carlo Method , Proton Therapy/instrumentation , Protons , Phantoms, Imaging , Reference Standards , Uncertainty , Water , Calibration
3.
Br J Radiol ; 96(1149): 20230110, 2023 Sep.
Article En | MEDLINE | ID: mdl-37493227

OBJECTIVE: Several studies have shown that dual-energy CT (DECT) can lead to improved accuracy for proton range estimation. This study investigated the clinical benefit of reduced range uncertainty, enabled by DECT, in robust optimisation for neuro-oncological patients. METHODS: DECT scans for 27 neuro-oncological patients were included. Commercial software was applied to create stopping-power ratio (SPR) maps based on the DECT scan. Two plans were robustly optimised on the SPR map, keeping the beam and plan settings identical to the clinical plan. One plan was robustly optimised and evaluated with a range uncertainty of 3% (as used clinically; denoted 3%-plan); the second plan applied a range uncertainty of 2% (2%-plan). Both plans were clinical acceptable and optimal. The dose-volume histogram parameters were compared between the two plans. Two experienced neuro-radiation oncologists determined the relevant dose difference for each organ-at-risk (OAR). Moreover, the OAR toxicity levels were assessed. RESULTS: For 24 patients, a dose reduction >0.5/1 Gy (relevant dose difference depending on the OAR) was seen in one or more OARs for the 2%-plan; e.g. for brainstem D0.03cc in 10 patients, and hippocampus D40% in 6 patients. Furthermore, 12 patients had a reduction in toxicity level for one or two OARs, showing a clear benefit for the patient. CONCLUSION: Robust optimisation with reduced range uncertainty allows for reduction of OAR toxicity, providing a rationale for clinical implementation. Based on these results, we have clinically introduced DECT-based proton treatment planning for neuro-oncological patients, accompanied with a reduced range uncertainty of 2%. ADVANCES IN KNOWLEDGE: This study shows the clinical benefit of range uncertainty reduction from 3% to 2% in robustly optimised proton plans. A dose reduction to one or more OARs was seen for 89% of the patients, and 44% of the patients had an expected toxicity level decrease.


Proton Therapy , Protons , Humans , Proton Therapy/methods , Uncertainty , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods
4.
Radiother Oncol ; 184: 109675, 2023 07.
Article En | MEDLINE | ID: mdl-37084884

BACKGROUND AND PURPOSE: Studies have shown large variations in stopping-power ratio (SPR) prediction from computed tomography (CT) across European proton centres. To standardise this process, a step-by-step guide on specifying a Hounsfield look-up table (HLUT) is presented here. MATERIALS AND METHODS: The HLUT specification process is divided into six steps: Phantom setup, CT acquisition, CT number extraction, SPR determination, HLUT specification, and HLUT validation. Appropriate CT phantoms have a head- and body-sized part, with tissue-equivalent inserts in regard to X-ray and proton interactions. CT numbers are extracted from a region-of-interest covering the inner 70% of each insert in-plane and several axial CT slices in scan direction. For optimal HLUT specification, the SPR of phantom inserts is measured in a proton beam and the SPR of tabulated human tissues is computed stoichiometrically at 100 MeV. Including both phantom inserts and tabulated human tissues increases HLUT stability. Piecewise linear regressions are performed between CT numbers and SPRs for four tissue groups (lung, adipose, soft tissue, and bone) and then connected with straight lines. Finally, a thorough but simple validation is performed. RESULTS: The best practices and individual challenges are explained comprehensively for each step. A well-defined strategy for specifying the connection points between the individual line segments of the HLUT is presented. The guide was tested exemplarily on three CT scanners from different vendors, proving its feasibility. CONCLUSION: The presented step-by-step guide for CT-based HLUT specification with recommendations and examples can contribute to reduce inter-centre variations in SPR prediction.


Proton Therapy , Humans , Proton Therapy/methods , Protons , Consensus , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Calibration
5.
Adv Radiat Oncol ; 8(2): 101128, 2023.
Article En | MEDLINE | ID: mdl-36632089

Purpose: The current knowledge on biological effects associated with proton therapy is limited. Therefore, we investigated the distributions of dose, dose-averaged linear energy transfer (LETd), and the product between dose and LETd (DLETd) for a patient cohort treated with proton therapy. Different treatment planning system features and visualization tools were explored. Methods and Materials: For a cohort of 24 patients with brain tumors, the LETd, DLETd, and dose was calculated for a fixed relative biological effectiveness value and 2 variable models: plan-based and phenomenological. Dose threshold levels of 0, 5, and 20 Gy were imposed for LETd visualization. The relationship between physical dose and LETd and the frequency of LETd hotspots were investigated. Results: The phenomenological relative biological effectiveness model presented consistently higher dose values. For lower dose thresholds, the LETd distribution was steered toward higher values related to low treatment doses. Differences up to 26.0% were found according to the threshold. Maximum LETd values were identified in the brain, periventricular space, and ventricles. An inverse relationship between LETd and dose was observed. Frequency information to the domain of dose and LETd allowed for the identification of clusters, which steer the mean LETd values, and the identification of higher, but sparse, LETd values. Conclusions: Identifying, quantifying, and recording LET distributions in a standardized fashion is necessary, because concern exists over a link between toxicity and LET hotspots. Visualizing DLETd or dose × LETd during treatment planning could allow for clinicians to make informed decisions.

6.
Radiat Oncol ; 17(1): 50, 2022 Mar 09.
Article En | MEDLINE | ID: mdl-35264184

BACKGROUND: Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS: The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS: The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION: Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS: Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.


Brain Neoplasms/radiotherapy , Skull Base Neoplasms/radiotherapy , Brain Neoplasms/pathology , Female , Humans , Male , Monte Carlo Method , Neoplasm Staging , Organs at Risk , Poland , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness , Skull Base Neoplasms/pathology , Tomography, X-Ray Computed
7.
Radiother Oncol ; 169: 77-85, 2022 04.
Article En | MEDLINE | ID: mdl-35189152

4D multi-image-based (4DMIB) optimization is a form of robust optimization where different uncertainty scenarios, due to anatomy variations, are considered via multiple image sets (e.g., 4DCT). In this review, we focused on providing an overview of different 4DMIB optimization implementations, introduced various frameworks to evaluate the robustness of scanned particle therapy affected by breathing motion and summarized the existing evidence on the necessity of using 4DMIB optimization clinically. Expected potential benefits of 4DMIB optimization include more robust and/or interplay-effect-resistant doses for the target volume and organs-at-risk for indications affected by anatomical variations (e.g., breathing, peristalsis, etc.). Although considerable literature is available on the research and technical aspects of 4DMIB, clinical studies are rare and often contain methodological limitations, such as, limited patient number, motion amplitude, motion and delivery time structure considerations, number of repeat CTs, etc. Therefore, the data are not conclusive. In addition, multiple studies have found that robust 3D optimized plans result in dose distributions within the set clinical tolerances and, therefore, are suitable for a treatment of moving targets with scanned particle therapy. We, therefore, consider the clinical necessity of 4DMIB optimization, when treating moving targets with scanned particle therapy, as still to be demonstrated.


Lung Neoplasms , Proton Therapy , Four-Dimensional Computed Tomography/methods , Humans , Motion , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Respiration
8.
Radiother Oncol ; 163: 143-149, 2021 10.
Article En | MEDLINE | ID: mdl-34461183

PURPOSE: We investigated the relationship between RBE-weighted dose (DRBE) calculated with constant (cRBE) and variable RBE (vRBE), dose-averaged linear energy transfer (LETd) and the risk of radiographic changes in skull base patients treated with protons. METHODS: Clinical treatment plans of 45 patients were recalculated with Monte Carlo tool FRED. Radiographic changes (i.e. edema and/or necrosis) were identified by MRI. Dosimetric parameters for cRBE and vRBE were computed. Biological margin extension and voxel-based analysis were employed looking for association of DRBE(vRBE) and LETd with brain edema and/or necrosis. RESULTS: When using vRBE, Dmax in the brain was above the highest dose limits for 38% of patients, while such limit was never exceeded assuming cRBE. Similar values of Dmax were observed in necrotic regions, brain and temporal lobes. Most of the brain necrosis was in proximity to the PTV. The voxel-based analysis did not show evidence of an association with high LETd values. CONCLUSIONS: When looking at standard dosimetric parameters, the higher dose associated with vRBE seems to be responsible for an enhanced risk of radiographic changes. However, as revealed by a voxel-based analysis, the large inter-patient variability hinders the identification of a clear effect for high LETd.


Proton Therapy , Skull Base Neoplasms , Brain/diagnostic imaging , Humans , Monte Carlo Method , Necrosis/etiology , Proton Therapy/adverse effects , Radiotherapy Planning, Computer-Assisted , Relative Biological Effectiveness , Skull Base Neoplasms/diagnostic imaging , Skull Base Neoplasms/radiotherapy
9.
Med Phys ; 48(8): 4425-4437, 2021 Aug.
Article En | MEDLINE | ID: mdl-34214201

PURPOSE: Intensity-modulated proton therapy (IMPT) for lung tumors with a large tumor movement is challenging due to loss of robustness in the target coverage. Often an upper cut-off at 5-mm tumor movement is used for proton patient selection. In this study, we propose (1) a robust and easily implementable treatment planning strategy for lung tumors with a movement larger than 5 mm, and (2) a four-dimensional computed tomography (4DCT) robust evaluation strategy for evaluating the dose distribution on the breathing phases. MATERIALS AND METHODS: We created a treatment planning strategy based on the internal target volume (ITV) concept (aim 1). The ITV was created as a union of the clinical target volumes (CTVs) on the eight 4DCT phases. The ITV expanded by 2 mm was the target during robust optimization on the average CT (avgCT). The clinical plan acceptability was judged based on a robust evaluation, computing the voxel-wise min and max (VWmin/max) doses over 28 error scenarios (range and setup errors) on the avgCT. The plans were created in RayStation (RaySearch Laboratories, Stockholm, Sweden) using a Monte Carlo dose engine, commissioned for our Mevion S250i Hyperscan system (Mevion Medical Systems, Littleton, MA, USA). We developed a new 4D robust evaluation approach (4DRobAvg; aim 2). The 28 scenario doses were computed on each individual 4DCT phase. For each scenario, the dose distributions on the individual phases were deformed to the reference phase and combined to a weighted sum, resulting in 28 weighted sum scenario dose distributions. From these 28 scenario doses, VWmin/max doses were computed. This new 4D robust evaluation was compared to two simpler 4D evaluation strategies: re-computing the nominal plan on each individual 4DCT phase (4DNom) and computing the robust VWmin/max doses on each individual phase (4DRobInd). The treatment planning and dose evaluation strategies were evaluated for 16 lung cancer patients with tumor movement of 4-26 mm. RESULTS: The ratio of the ITV and CTV volumes increased linearly with the tumor amplitude, with an average ratio of 1.4. Despite large ITV volumes, a clinically acceptable plan fulfilling all target and organ at risk (OAR) constraints was feasible for all patients. The 4DNom and 4DRobInd evaluation strategies were found to under- or overestimate the dosimetric effect of the tumor movement, respectively. 4DRobInd showed target underdosage for five patients, not observed in the robust evaluation on the avgCT or in 4DRobAvg. The accuracy of dose deformation used in 4DRobAvg was quantified and found acceptable, with differences for the dose-volume parameters below 1 Gy in most cases. CONCLUSION: The proposed ITV-based planning strategy on the avgCT was found to be a clinically feasible approach with adequate tumor coverage and no OAR overdosage even for large tumor movement. The new proposed 4D robust evaluation, 4DRobAvg, was shown to give an easily interpretable understanding of the effect of respiratory motion dose distribution, and to give an accurate estimate of the dose delivered in the different breathing phases.


Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Respiration
10.
Radiother Oncol ; 163: 7-13, 2021 10.
Article En | MEDLINE | ID: mdl-34329653

PURPOSE: Experimental assessment of inter-centre variation and absolute accuracy of stopping-power-ratio (SPR) prediction within 17 particle therapy centres of the European Particle Therapy Network. MATERIAL AND METHODS: A head and body phantom with seventeen tissue-equivalent materials were scanned consecutively at the participating centres using their individual clinical CT scan protocol and translated into SPR with their in-house CT-number-to-SPR conversion. Inter-centre variation and absolute accuracy in SPR prediction were quantified for three tissue groups: lung, soft tissues and bones. The integral effect on range prediction for typical clinical beams traversing different tissues was determined for representative beam paths for the treatment of primary brain tumours as well as lung and prostate cancer. RESULTS: An inter-centre variation in SPR prediction (2σ) of 8.7%, 6.3% and 1.5% relative to water was determined for bone, lung and soft-tissue surrogates in the head setup, respectively. Slightly smaller variations were observed in the body phantom (6.2%, 3.1%, 1.3%). This translated into inter-centre variation of integral range prediction (2σ) of 2.9%, 2.6% and 1.3% for typical beam paths of prostate-, lung- and primary brain-tumour treatments, respectively. The absolute error in range exceeded 2% in every fourth participating centre. The consideration of beam hardening and the execution of an independent HLUT validation had a positive effect, on average. CONCLUSION: The large inter-centre variations in SPR and range prediction justify the currently clinically used margins accounting for range uncertainty, which are of the same magnitude as the inter-centre variation. This study underlines the necessity of higher standardisation in CT-number-to-SPR conversion.


Proton Therapy , Humans , Male , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Uncertainty
11.
Med Phys ; 48(7): 3583-3594, 2021 Jul.
Article En | MEDLINE | ID: mdl-33978240

PURPOSE: Modern computed tomography (CT) scanners have an extended field-of-view (eFoV) for reconstructing images up to the bore size, which is relevant for patients with higher BMI or non-isocentric positioning due to fixation devices. However, the accuracy of the image reconstruction in eFoV is not well known since truncated data are used. This study introduces a new deep learning-based algorithm for extended field-of-view reconstruction and evaluates the accuracy of the eFoV reconstruction focusing on aspects relevant for radiotherapy. METHODS: A life-size three-dimensional (3D) printed thorax phantom, based on a patient CT for which eFoV was necessary, was manufactured and used as reference. The phantom has holes allowing the placement of tissue mimicking inserts used to evaluate the Hounsfield unit (HU) accuracy. CT images of the phantom were acquired using different configurations aiming to evaluate geometric and HU accuracy in the eFoV. Image reconstruction was performed using a state-of-the-art reconstruction algorithm (HDFoV), commercially available, and the novel deep learning-based approach (HDeepFoV). Five patient cases were selected to evaluate the performance of both algorithms on patient data. There is no ground truth for patients so the reconstructions were qualitatively evaluated by five physicians and five medical physicists. RESULTS: The phantom geometry reconstructed with HDFoV showed boundary deviations from 1.0 to 2.5 cm depending on the volume of the phantom outside the regular scan field of view. HDeepFoV showed a superior performance regardless of the volume of the phantom within eFOV with a maximum boundary deviation below 1.0 cm. The maximum HU (absolute) difference for soft issue inserts is below 79 and 41 HU for HDFoV and HDeepFoV, respectively. HDeepFoV has a maximum deviation of -18 HU for an inhaled lung insert while HDFoV reached a 229 HU difference. The qualitative evaluation of patient cases shows that the novel deep learning approach produces images that look more realistic and have fewer artifacts. CONCLUSION: To be able to reconstruct images outside the sFoV of the CT scanner there is no alternative than to use some kind of extrapolated data. In our study, we proposed and investigated a new deep learning-based algorithm and compared it to a commercial solution for eFoV reconstruction. The deep learning-based algorithm showed superior performance in quantitative evaluations based on phantom data and in qualitative assessments of patient data.


Algorithms , Tomography, X-Ray Computed , Artifacts , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography Scanners, X-Ray Computed
12.
Phys Med Biol ; 65(14): 145002, 2020 07 13.
Article En | MEDLINE | ID: mdl-32294626

The primary cone-beam computed tomography (CBCT) imaging beam scatters inside the patient and produces a contaminating photon fluence that is registered by the detector. Scattered photons cause artifacts in the image reconstruction, and are partially responsible for the inferior image quality compared to diagnostic fan-beam CT. In this work, a deep convolutional autoencoder (DCAE) and projection-based scatter removal algorithm were constructed for the ImagingRingTM system on rails (IRr), which allows for non-isocentric acquisitions around virtual rotation centers with its independently rotatable source and detector arms. A Monte Carlo model was developed to simulate (i) a non-isocentric training dataset of ≈1200 projection pairs (primary + scatter) from 27 digital head-and-neck cancer patients around five different virtual rotation centers (DCAENONISO), and (ii) an isocentric dataset existing of ≈1200 projection pairs around the physical rotation center (DCAEISO). The scatter removal performance of both DCAE networks was investigated in two digital anthropomorphic phantom simulations and due to superior performance only the DCAENONISO was applied on eight real patient acquisitions. Measures for the quantitative error, the signal-to-noise ratio, and the similarity were evaluated for two simulated digital head-and-neck patients, and the contrast-to-noise ratio (CNR) was investigated between muscle and adipose tissue in the real patient image reconstructions. Image quality metrics were compared between the uncorrected data, the currently implemented heuristic scatter correction data, and the DCAE corrected image reconstruction. The DCAENONISO corrected image reconstructions of two digital patient simulations showed superior image quality metrics compared to the uncorrected and corrected image reconstructions using a heuristic scatter removal. The proposed DCAENONISO scatter correction in this study was successfully demonstrated in real non-isocentric patient CBCT acquisitions and achieved statistically significant higher CNRs compared to the uncorrected or the heuristic corrected image data. This paper presents for the first time a projection-based scatter removal algorithm for isocentric and non-isocentric CBCT imaging using a deep convolutional autoencoder trained on Monte Carlo composed datasets. The algorithm was successfully applied to real patient data.


Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Monte Carlo Method , Neural Networks, Computer , Scattering, Radiation , Artifacts , Head and Neck Neoplasms/diagnostic imaging , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
13.
Br J Radiol ; 93(1107): 20190598, 2020 Mar.
Article En | MEDLINE | ID: mdl-31782941

OBJECTIVES: To describe the measurements and to present the results of the beam commissioning and the beam model validation of a compact, gantry-mounted, spot scanning proton accelerator system with dynamic layer-by-layer field collimation. METHODS: We performed measurements of depth dose distributions in water, spot and scanned field size in air at different positions from the isocenter plane, spot position over the 20 × 20 cm2 scanned area, beam monitor calibration in terms of absorbed dose to water and specific field collimation measurements at different gantry angles to commission the system. To validate the beam model in the treatment planning system (TPS), we measured spot profiles in water at different depths, absolute dose in water of single energy layers of different field sizes and inversely optimised spread-out Bragg peaks (SOBP) under normal and oblique beam incidence, field size and penumbra in water of SOBPs, and patient treatment specific quality assurance in homogeneous and heterogeneous phantoms. RESULTS: Energy range, spot size, spot position and dose output were consistent at all gantry angles with 0.3 mm, 0.4 mm, 0.6 mm and 0.5% maximum deviations, respectively. Uncollimated spot size (one sigma) in air with an air-gap of 10 cm ranged from 4.1 to 16.4 mm covering a range from 32.2 to 1.9 cm in water, respectively. Absolute dose measurements were within 3% when comparing TPS and experimental data. Gamma pass rates >98% and >96% at 3%/3 mm were obtained when performing 2D dose measurements in homogeneous and in heterogeneous media, respectively. Leaf position was within ±1 mm at all gantry angles and nozzle positions. CONCLUSIONS: Beam characterisation and machine commissioning results, and the exhaustive end-to-end tests performed to assess the proper functionality of the system, confirm that it is safe and accurate to treat patients. ADVANCES IN KNOWLEDGE: This is the first paper addressing the beam commissioning and the beam validation of a compact, gantry-mounted, pencil beam scanning proton accelerator system with dynamic layer-by-layer multileaf collimation.


Cyclotrons , Proton Therapy/instrumentation , Absorption, Radiation , Air , Calibration , Certification , Equipment Design , Humans , Netherlands , Phantoms, Imaging , Proton Therapy/methods , Radiometry/methods , Reproducibility of Results , Water
14.
Med Phys ; 46(4): 1821-1828, 2019 Apr.
Article En | MEDLINE | ID: mdl-30695108

PURPOSE: The objective of this technical note was to investigate the accuracy of proton stopping power relative to water (RSP) estimation using a novel dual-layer, dual-energy computed tomography (DL-DECT) scanner for potential use in proton therapy planning. DL-DECT allows dual-energy reconstruction from scans acquired at a single x-ray tube voltage V by using two-layered detectors. METHODS: Sets of calibration and evaluation inserts were scanned at a DL-DECT scanner in a custom phantom with variable diameter D (0 to 150 mm) at V of 120 and 140 kV. Inserts were additionally scanned at a synchrotron computed tomography facility to obtain comparative linear attenuation coefficients for energies from 50 to 100 keV, and reference RSP was obtained using a carbon ion beam and variable water column. DL-DECT monoenergetic (mono-E) reconstructions were employed to obtain RSP by adapting the Yang-Saito-Landry (YSL) method. The method was compared to reference RSP via the root mean square error (RMSE) over insert mean values obtained from volumetric regions of interest. The accuracy of intermediate quantities such as the relative electron density (RED), effective atomic number (EAN), and the mono-E was additionally evaluated. RESULTS: The lung inserts showed higher errors for all quantities and we report RMSE excluding them. RMSE for µ from DL-DECT mono-E was below 1.9%. For the evaluation inserts at D = 150 mm and V = 140 kV, RED RMSE was 1.0%, while for EAN it was 2.9%. RSP RMSE was below 0.8% for all D and V, which did not strongly affect the results. CONCLUSIONS: In this investigation of RSP accuracy from DL-DECT, we have shown that RMSE below 1% can be achieved. It was possible to adapt the YSL method for DL-DECT and intermediate quantities RED and EAN had comparable accuracy to previous publications.


Image Processing, Computer-Assisted/methods , Lung/radiation effects , Neoplasms/radiotherapy , Phantoms, Imaging , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Calibration , Electrons , Humans , Organs at Risk/radiation effects , Proton Therapy/instrumentation , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Synchrotrons/instrumentation , Water/chemistry
15.
Phys Med Biol ; 64(6): 065003, 2019 03 08.
Article En | MEDLINE | ID: mdl-30695753

The use of a most likely path (MLP) formalism for protons to account for the effects of multiple Coulomb scattering has improved the spatial resolution in proton computed tomography (pCT). However, this formalism assumes a homogeneous medium and a continuous scattering of protons. In this paper, we quantify the path prediction error induced by transverse heterogeneities to assess whether correcting for such errors might improve the spatial resolution of pCT. To this end, we have tracked protons trajectories using Monte Carlo simulations in several phantoms with different heterogeneities. Our results show that transverse heterogeneities induce non Gaussian spatial distributions leading to errors in the prediction of the MLP, reaching 0.4 mm in a 20 cm wide simulated heterogeneity and 0.13 mm in a realistic phantom. It was also shown that when the spatial distributions have more than one peak, a most likely path, if any, has yet to be defined. Transverse heterogeneities also affect energy profiles, which could explain some of the artifacts described in other works and could make the energy cuts usually performed to exclude nuclear events less efficient.


Monte Carlo Method , Phantoms, Imaging , Protons , Tomography, X-Ray Computed/methods , Humans
16.
Phys Med ; 54: 121-130, 2018 Oct.
Article En | MEDLINE | ID: mdl-30337001

In 2016 and 2017, the 8th and 9th 4D treatment planning workshop took place in Groningen (the Netherlands) and Vienna (Austria), respectively. This annual workshop brings together international experts to discuss research, advances in clinical implementation as well as problems and challenges in 4D treatment planning, mainly in spot scanned proton therapy. In the last two years several aspects like treatment planning, beam delivery, Monte Carlo simulations, motion modeling and monitoring, QA phantoms as well as 4D imaging were thoroughly discussed. This report provides an overview of discussed topics, recent findings and literature review from the last two years. Its main focus is to highlight translation of 4D research into clinical practice and to discuss remaining challenges and pitfalls that still need to be addressed and to be overcome.


Four-Dimensional Computed Tomography , Radiotherapy Planning, Computer-Assisted/methods , Monte Carlo Method , Movement , Phantoms, Imaging , Radiotherapy Dosage
17.
Phys Med ; 32(7): 874-82, 2016 Jul.
Article En | MEDLINE | ID: mdl-27328991

Since 2009, a 4D treatment planning workshop has taken place annually, gathering researchers working on the treatment of moving targets, mainly with scanned ion beams. Topics discussed during the workshops range from problems of time resolved imaging, the challenges of motion modelling, the implementation of 4D capabilities for treatment planning, up to different aspects related to 4D dosimetry and treatment verification. This report gives an overview on topics discussed at the 4D workshops in 2014 and 2015. It summarizes recent findings, developments and challenges in the field and discusses the relevant literature of the recent years. The report is structured in three parts pointing out developments in the context of understanding moving geometries, of treating moving targets and of 4D quality assurance (QA) and 4D dosimetry. The community represented at the 4D workshops agrees that research in the context of treating moving targets with scanned ion beams faces a crucial phase of clinical translation. In the coming years it will be important to define standards for motion monitoring, to establish 4D treatment planning guidelines and to develop 4D QA tools. These basic requirements for the clinical application of scanned ion beams to moving targets could e.g. be determined by a dedicated ESTRO task group. Besides reviewing recent research results and pointing out urgent needs when treating moving targets with scanned ion beams, the report also gives an outlook on the upcoming 4D workshop organized at the University Medical Center Groningen (UMCG) in the Netherlands at the end of 2016.


Four-Dimensional Computed Tomography , Radiotherapy Planning, Computer-Assisted , Research Report , Translational Research, Biomedical , Humans , Image Processing, Computer-Assisted , Proton Therapy , Radiometry
18.
Phys Med Biol ; 60(13): 5053-70, 2015 Jul 07.
Article En | MEDLINE | ID: mdl-26061666

The aim of this work is to extend a widely used proton Monte Carlo tool, TOPAS, towards the modeling of relative biological effect (RBE) distributions in experimental arrangements as well as patients. TOPAS provides a software core which users configure by writing parameter files to, for instance, define application specific geometries and scoring conditions. Expert users may further extend TOPAS scoring capabilities by plugging in their own additional C++ code. This structure was utilized for the implementation of eight biophysical models suited to calculate proton RBE. As far as physics parameters are concerned, four of these models are based on the proton linear energy transfer, while the others are based on DNA double strand break induction and the frequency-mean specific energy, lineal energy, or delta electron generated track structure. The biological input parameters for all models are typically inferred from fits of the models to radiobiological experiments. The model structures have been implemented in a coherent way within the TOPAS architecture. Their performance was validated against measured experimental data on proton RBE in a spread-out Bragg peak using V79 Chinese Hamster cells. This work is an important step in bringing biologically optimized treatment planning for proton therapy closer to the clinical practice as it will allow researchers to refine and compare pre-defined as well as user-defined models.


Proton Therapy/methods , Protons/adverse effects , Software , Animals , Cell Line , Cricetinae , Cricetulus , DNA Breaks, Double-Stranded , Electrons , Humans , Linear Energy Transfer , Monte Carlo Method , Proton Therapy/adverse effects , Relative Biological Effectiveness
19.
Phys Med Biol ; 57(20): 6429-44, 2012 Oct 21.
Article En | MEDLINE | ID: mdl-22996154

Therapeutic proton and heavier ion beams generate prompt gamma photons that may escape from the patient. In principle, this allows for real-time, in situ monitoring of the treatment delivery, in particular, the hadron range within the patient, by imaging the emitted prompt gamma rays. Unfortunately, the neutrons simultaneously created with the prompt photons create a background that may obscure the prompt gamma signal. To enhance the accuracy of proton dose verification by prompt gamma imaging, we therefore propose a time-of-flight (TOF) technique to reject this neutron background, involving a shifting time window to account for the propagation of the protons through the patient. Time-resolved Monte Carlo simulations of the generation and transport of prompt gamma photons and neutrons upon irradiation of a PMMA phantom with 100, 150 and 200 MeV protons were performed using Geant4 (version 9.2.p02) and MCNPX (version 2.7.D). The influence of angular collimation and TOF selection on the prompt gamma and neutron longitudinal profiles is studied. Furthermore, the implications of the proton beam microstructure (characterized by the proton bunch width and repetition period) are investigated. The application of a shifting TOF window having a width of ΔTOF(z) = 1.0 ns appears to reduce the neutron background by more than 99%. Subsequent application of an energy threshold does not appear to sharpen the distal falloff of the prompt gamma profile but reduces the tail that is observed beyond the proton range. Investigations of the influence of the beam time structure show that TOF rejection of the neutron background is expected to be effective for typical therapeutic proton cyclotrons.


Monte Carlo Method , Neutrons , Proton Therapy/methods , Radionuclide Imaging , Radiotherapy, Computer-Assisted/methods , Phantoms, Imaging , Radiotherapy Dosage , Time Factors
...