Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Sci Total Environ ; 892: 164818, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37315600

Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mitigation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp forests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services they provide, is hindering the development of effective conservation measures and limiting wider marine conservation success. This is becoming a pressing issue, considering the multiple severe pressures and threats these habitats are exposed to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and ecosystem services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of associated biodiversity, thus ensuring the sustainability of future conservation programs.


Biodiversity , Ecosystem , Coral Reefs , Environmental Pollution , Forests , Conservation of Natural Resources
2.
Plants (Basel) ; 10(2)2021 Feb 09.
Article En | MEDLINE | ID: mdl-33572371

Chemical ecology has been suggested as a less time-consuming and more cost-efficient monitoring tool of seagrass ecosystems than traditional methods. Phenolic chemistry in Zostera marina samples was analyzed against latitude, sea depth, sample position within a seagrass meadow (periphery or center) and wave exposure. Multivariate data analysis showed that rosmarinic acid correlated moderately positively with depth, while the flavonoids had an overall strong negative correlation with increasing depth-possibly reflecting lack of stress-induced conditions with increasing depth, rather than a different response to light conditions. At a molecular level, the flavonoids were separated into two groups; one group is well described by the variables of depth and wave exposure, and the other group that was not well described by these variables-the latter may reflect biosynthetic dependencies or other unrevealed factors. A higher flavonoid/rosmarinic acid ratio was seen in the periphery of a seagrass meadow, while the contrary ratio was seen in the center. This may reflect higher plant stress in the periphery of a meadow, and the flavonoid/rosmarinic acid ratio may provide a possible molecular index of seagrass ecosystem health. Further studies are needed before the full potential of using variation in phenolic chemistry as a seagrass ecosystem monitoring tool is established.

3.
Oecologia ; 192(1): 213-225, 2020 Jan.
Article En | MEDLINE | ID: mdl-31828530

With the increasing imperative for societies to act to curb climate change by increasing carbon stores and sinks, it has become critical to understand how organic carbon is produced, released, transformed, transported, and sequestered within and across ecosystems. In freshwater and open-ocean systems, shredders play a significant and well-known role in transforming and mobilizing carbon, but their role in the carbon cycle of coastal ecosystems is largely unknown. Marine plants such as kelps produce vast amounts of detritus, which can be captured and consumed by shedders as it traverses the seafloor. We measured capture and consumption rates of kelp detritus by sea urchins across four sampling periods and over a range of kelp detritus production rates and sea urchin densities, in northern Norway. When sea urchin densities exceeded 4 m-2, the sea urchins captured and consumed a high percentage (ca. 80%) of kelp detritus on shallow reefs. We calculated that between 1.3 and 10.8 kg of kelp m-2 are shredded annually from these reefs. We used a hydrodynamic dispersal model to show that transformation of kelp blades to sea urchin feces increased its export distance fourfold. Our findings show that sea urchins can accelerate and extend the export of carbon to neighboring areas. This collector-shredder pathway could represent a significant flow of small particulate carbon from kelp forests to deep-sea areas, where it can subsidize benthic communities or contribute to the global carbon sink.


Kelp , Animals , Carbon , Ecosystem , Food Chain , Norway , Sea Urchins
4.
Ecol Evol ; 9(5): 2847-2862, 2019 Mar.
Article En | MEDLINE | ID: mdl-30891221

Ongoing changes along the northeastern Atlantic coastline provide an opportunity to explore the influence of climate change and multitrophic interactions on the recovery of kelp. Here, vast areas of sea urchin-dominated barren grounds have shifted back to kelp forests, in parallel with changes in sea temperature and predator abundances. We have compiled data from studies covering more than 1,500-km coastline in northern Norway. The dataset has been used to identify regional patterns in kelp recovery and sea urchin recruitment, and to relate these to abiotic and biotic factors, including structurally complex substrates functioning as refuge for sea urchins. The study area covers a latitudinal gradient of temperature and different levels of predator pressure from the edible crab (Cancer pagurus) and the red king crab (Paralithodes camtschaticus). The population development of these two sea urchin predators and a possible predator on crabs, the coastal cod (Gadus morhua), were analyzed. In the southernmost and warmest region, kelp forests recovery and sea urchin recruitment are mainly low, although sea urchins might also be locally abundant. Further north, sea urchin barrens still dominate, and juvenile sea urchin densities are high. In the northernmost and cold region, kelp forests are recovering, despite high recruitment and densities of sea urchins. Here, sea urchins were found only in refuge habitats, whereas kelp recovery occurred mainly on open bedrock. The ocean warming, the increase in the abundance of edible crab in the south, and the increase in invasive red king crab in the north may explain the observed changes in kelp recovery and sea urchin distribution. The expansion of both crab species coincided with a population decline in the top-predator coastal cod. The role of key species (sea urchins, kelp, cod, and crabs) and processes involved in structuring the community are hypothesized in a conceptual model, and the knowledge behind the suggested links and interactions is explored.

5.
Sci Rep ; 9(1): 578, 2019 01 24.
Article En | MEDLINE | ID: mdl-30679622

Coralline algae form extensive maerl and rhodolith habitats that support a rich biodiversity. Calcium carbonate harvesting as well as trawling activities threatens this ecosystem. Eleven species were recorded so far as maerl-forming in NE Atlantic, but identification based on morphological characters is unreliable. As for most red algae, we now use molecular characters to resolve identification of these taxa. However, obtaining DNA sequences requires time and resource demanding methods. The purpose of our study was to improve methods for achieving simple DNA extraction, amplification, sequencing and sequence analysis to allow robust identification of maerl species and other coralline algae. Our novel and easy DNA preparation method for coralline algae was of sufficient quality for qPCR amplification and sequencing of all 47 tested samples. The new psbA qPCR assay successfully amplified a 350 bp fragment identifying six species and uncovering two new Operational Taxonomic Units. Molecular results were corroborated with anatomical examination using i.e. scanning electron microscopy. Finally, the qPCR assay was coupled with High Resolution Melt analysis that successfully differentiated the closely related species Lithothamnion erinaceum and L. cf. glaciale. This DNA preparation and qPCR technique should vitalize coralline research by reducing time and cost associated with molecular systematics.


Anthozoa/microbiology , DNA Barcoding, Taxonomic/methods , DNA, Algal/isolation & purification , Nucleic Acid Denaturation , Photosystem II Protein Complex/genetics , Rhodophyta/classification , Rhodophyta/genetics , Animals , DNA, Algal/chemistry , DNA, Algal/genetics , Rhodophyta/enzymology
6.
PLoS One ; 12(5): e0177481, 2017.
Article En | MEDLINE | ID: mdl-28486520

The Pacific oyster, Crassostrea gigas, was introduced to Europe for aquaculture purposes, and has had a rapid and unforeseen northward expansion in northern Europe. The recent dramatic increase in number of C. gigas populations along the species' northern distribution limit has questioned the efficiency of Skagerrak as a dispersal barrier for transport and survival of larvae. We investigated the genetic connectivity and possible spreading patterns between Pacific oyster populations on the southern Norwegian coast (4 localities) and Swedish and Danish populations by means of DNA microsatellite analysis of adult oysters, and by simulating larvae drift. In the simulations we used a 3D oceanographic model to explore the influence of recent climate change (1990-2010) on development, survival, and successful spreading of Danish and Swedish Pacific oyster larvae to Norwegian coastal waters. The simulations indicated adequate temperature conditions for development, survival, and settlement of larvae across the Skagerrak in warm years since 2000. However, microsatellite genotyping revealed genetic differences between the Norwegian populations, and between the Norwegian populations and the Swedish and Danish populations, the latter two populations being more similar. This patchwork pattern of genetic dissimilarity among the Norwegian populations points towards multiple local introduction routes rather than the commonly assumed unidirectional entry of larvae drifted from Denmark and Sweden. Alternative origins of introduction and implications for management, such as forecasting and possible mitigation actions, are discussed.


Ostreidae/growth & development , Animals , DNA, Satellite/genetics , Europe , Ostreidae/genetics
7.
Sci Rep ; 6: 23800, 2016 Mar 30.
Article En | MEDLINE | ID: mdl-27025314

A test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours. The deep-water shrimp Pandalus borealis were attracted to the macroalgae rapidly (3 min after the lander reached the seafloor), followed by amphipods. Shrimp abundances were significantly higher in areas covered by macroalgae compared to the adjacent seafloor and the number of shrimp visiting the macroalgae increased with time. Amphipods arrived 13 hours later and were observed mainly on decaying L. hyperborea. The abundance of amphipods on L. hyperborea increased rapidly, reaching a peak at 31 h after deployment. These initial observations suggest that debris from kelp forests and other macroalgal beds may play an important role in fuelling deep benthic communities in the outer Oslofjord and, potentially, enhance secondary production of commercial species such as P. borealis.


Amphipoda/physiology , Kelp , Pandalidae/physiology , Animal Distribution , Animals , Feeding Behavior , Norway , Time-Lapse Imaging
9.
PLoS One ; 9(6): e100222, 2014.
Article En | MEDLINE | ID: mdl-24949954

The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas.


Herbivory , Kelp , Physical Phenomena , Sea Urchins , Spatio-Temporal Analysis , Animals , Atlantic Ocean , Climate Change , Models, Statistical , Temperature
10.
Aquat Conserv ; 24(3): 410-434, 2014 Jun.
Article En | MEDLINE | ID: mdl-26167100

This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3-10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.

11.
Ambio ; 39(2): 148-58, 2010 Mar.
Article En | MEDLINE | ID: mdl-20653277

For many years, the planning and management of terrestrial areas has been supported by a detailed knowledge of the distribution of habitats and their associated species. However, the detailed mapping of biological resources in extent coastal areas, such as the Norwegian coastal zone, is unrealistic due to its enormous coastline. Here, we present a useful and feasible approach and a set of simple, cost-effective methods which are suitable for providing a broad-scale overview of marine habitats and fish resources. This approach was developed in conjunction with a pioneer study conducted along the southern coast of the Skagerrak, where we combined knowledge gathered from local fishermen with scientific knowledge of important species and nature types to establish a coastal sea mapping program. GIS modeling tools were used in both the mapping program and to integrate local and scientific knowledge into digital maps made available to local area management. This multi-faceted approach, which combines local knowledge and scientific methods, provides valuable information with respect to marine biodiversity, and has been used extensively by local environmental management.


Ecosystem , Fishes/physiology , Plants , Animals , Conservation of Natural Resources , Demography , Environmental Monitoring , Geographic Information Systems , Models, Biological , Norway , Oceans and Seas
...