Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Matrix Biol ; 130: 20-35, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677444

Epithelial cells adhere to a specialized extracellular matrix called the basement membrane which allows them to polarize and form epithelial tissues. The extracellular matrix provides essential physical scaffolding and biochemical and biophysical cues required for tissue morphogenesis, differentiation, function, and homeostasis. Epithelial cell adhesion to the extracellular matrix (i.e., basement membrane) plays a critical role in organizing epithelial tissues, separating the epithelial cells from the stroma. Epithelial cell detachment from the basement membrane classically results in death, though detachment or invasion through the basement membrane represents a critical step in carcinogenesis. Epithelial cells bind to the extracellular matrix via specialized matrix receptors, including integrins. Integrins are transmembrane receptors that form a mechanical linkage between the extracellular matrix and the intracellular cytoskeleton and are required for anchorage-dependent cellular functions such as proliferation, migration, and invasion. The role of integrins in the development, growth, and dissemination of multiple types of carcinomas has been investigated by numerous methodologies, which has led to great complexity. To organize this vast array of information, we have utilized the "Hallmarks of Cancer" from Hanahan and Weinberg as a convenient framework to discuss the role of integrins in the pathogenesis of cancers. This review explores this biology and how its complexity has impacted the development of integrin-targeted anti-cancer therapeutics.


Cell Adhesion , Extracellular Matrix , Integrins , Neoplasms , Humans , Integrins/metabolism , Integrins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Extracellular Matrix/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Animals , Basement Membrane/metabolism , Basement Membrane/pathology , Signal Transduction , Cell Movement , Neoplasm Invasiveness , Cell Proliferation
2.
Nat Commun ; 13(1): 6036, 2022 10 13.
Article En | MEDLINE | ID: mdl-36229464

Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention. Pathway analyses and ligand/receptor status model cellular interactions among ICC/IDC and the tumor microenvironment (TME) including JAG1/NOTCH. The ICC/IDC TME is hallmarked by increased angiogenesis and immunosuppressive fibroblasts (CTHRC1+ASPN+FAP+ENG+) along with fewer T cells, elevated T cell dysfunction, and increased C1QB+TREM2+APOE+-M2 macrophages. These findings support that cancer cell intrinsic pathways and a complex immunosuppressive TME contribute to the aggressive phenotype of ICC/IDC. These data highlight potential therapeutic opportunities to restore immune signaling in patients with ICC/IDC that may afford better outcomes.


Carcinoma, Intraductal, Noninfiltrating , Prostatic Neoplasms , Apolipoproteins E , Carcinoma, Intraductal, Noninfiltrating/genetics , Extracellular Matrix Proteins , Humans , Ligands , Male , Neoplasm Grading , Prostatic Neoplasms/pathology , RNA , Receptors, Antigen, T-Cell , Single-Cell Analysis , Tumor Microenvironment/genetics
3.
J Pathol Clin Res ; 7(3): 271-286, 2021 05.
Article En | MEDLINE | ID: mdl-33600062

Outcomes for men with localized prostate cancer vary widely, with some men effectively managed without treatment on active surveillance, while other men rapidly progress to metastatic disease despite curative-intent therapies. One of the strongest prognostic indicators of outcome is grade groups based on the Gleason grading system. Gleason grade 4 prostate cancer with cribriform morphology is associated with adverse outcomes and can be utilized clinically to improve risk stratification. The underpinnings of disease aggressiveness associated with cribriform architecture are not fully understood. Most studies have focused on genetic and molecular alterations in cribriform tumor cells; however, less is known about the tumor microenvironment in cribriform prostate cancer. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of fibroblasts in the tumor microenvironment that impact cancer aggressiveness. The overall goal of this study was to determine if cribriform prostate cancers are associated with a unique repertoire of CAFs. Radical prostatectomy whole-tissue sections were analyzed for the expression of fibroblast markers (ASPN in combination with FAP, THY1, ENG, NT5E, TNC, and PDGFRß) in stroma adjacent to benign glands and in Gleason grade 3, Gleason grade 4 cribriform, and Gleason grade 4 noncribriform prostate cancer by RNAscope®. Halo® Software was used to quantify percent positive stromal cells and expression per positive cell. The fibroblast subtypes enriched in prostate cancer were highly heterogeneous. Both overlapping and distinct populations of low abundant fibroblast subtypes in benign prostate stroma were enriched in Gleason grade 4 prostate cancer with cribriform morphology compared to Gleason grade 4 prostate cancer with noncribriform morphology and Gleason grade 3 prostate cancer. In addition, gene expression was distinctly altered in CAF subtypes adjacent to cribriform prostate cancer. Overall, these studies suggest that cribriform prostate cancer has a unique tumor microenvironment that may distinguish it from other Gleason grade 4 morphologies and lower Gleason grades.


Biomarkers, Tumor/analysis , Cancer-Associated Fibroblasts/chemistry , Prostatic Neoplasms/chemistry , Biomarkers, Tumor/genetics , Cancer-Associated Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , In Situ Hybridization , Male , Neoplasm Grading , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Microenvironment
5.
Materials (Basel) ; 11(10)2018 Oct 05.
Article En | MEDLINE | ID: mdl-30301133

The filling of channels in porous media with particles of a material can be interpreted in a first approximation as a packing of spheres in cylindrical recipients. Numerous studies on micro- and nanoscopic scales show that they are, as a rule, not ideal cylinders. In this paper, the channels, which have an irregular shape and a circular cross-section, as well as the packing algorithms are investigated. Five patterns of channel shapes are detected to represent any irregular porous structures. A novel heuristic packing algorithm for monosized spheres and different irregularities is proposed. It begins with an initial configuration based on an fcc unit cell and the subsequent densification of the obtained structure by shaking and gravity procedures. A verification of the algorithm was carried out for nine sinusoidal axisymmetric channels with different Dmin/Dmax ratio by MATLAB® simulations, reaching a packing fraction of at least 0.67 (for sphere diameters of 5%Dmin or less), superior to a random close packing density. The maximum packing fraction was 73.01% for a channel with a ratio of Dmin/Dmax = 0.1 and a sphere size of 5%Dmin. For sphere diameters of 50%Dmin or larger, it was possible to increase the packing factor after applying shaking and gravity movements.

6.
Sensors (Basel) ; 17(6)2017 Jun 14.
Article En | MEDLINE | ID: mdl-28613238

Both the idea and technology for connecting sensors and actuators to a network to remotely monitor and control physical systems have been known for many years and developed accordingly. However, a little more than a decade ago the concept of the Internet of Things (IoT) was coined and used to integrate such approaches into a common framework. Technology has been constantly evolving and so has the concept of the Internet of Things, incorporating new terminology appropriate to technological advances and different application domains. This paper presents the changes that the IoT has undertaken since its conception and research on how technological advances have shaped it and fostered the arising of derived names suitable to specific domains. A two-step literature review through major publishers and indexing databases was conducted; first by searching for proposals on the Internet of Things concept and analyzing them to find similarities, differences, and technological features that allow us to create a timeline showing its development; in the second step the most mentioned names given to the IoT for specific domains, as well as closely related concepts were identified and briefly analyzed. The study confirms the claim that a consensus on the IoT definition has not yet been reached, as enabling technology keeps evolving and new application domains are being proposed. However, recent changes have been relatively moderated, and its variations on application domains are clearly differentiated, with data and data technologies playing an important role in the IoT landscape.

7.
Sensors (Basel) ; 16(11)2016 Oct 26.
Article En | MEDLINE | ID: mdl-27792165

Biosensors are small analytical devices incorporating a biological recognition element and a physico-chemical transducer to convert a biological signal into an electrical reading. Nowadays, their technological appeal resides in their fast performance, high sensitivity and continuous measuring capabilities; however, a full understanding is still under research. This paper aims to contribute to this growing field of biotechnology, with a focus on Glucose-Oxidase Biosensor (GOB) modeling through statistical learning methods from a regression perspective. We model the amperometric response of a GOB with dependent variables under different conditions, such as temperature, benzoquinone, pH and glucose concentrations, by means of several machine learning algorithms. Since the sensitivity of a GOB response is strongly related to these dependent variables, their interactions should be optimized to maximize the output signal, for which a genetic algorithm and simulated annealing are used. We report a model that shows a good generalization error and is consistent with the optimization.


Biosensing Techniques/methods , Glucose Oxidase/metabolism , Glucose/analysis , Machine Learning , Benzoquinones/chemistry , Benzoquinones/metabolism , Hydrogen-Ion Concentration , Least-Squares Analysis , Temperature
8.
Genes Genet Syst ; 90(6): 343-56, 2016 Apr 28.
Article En | MEDLINE | ID: mdl-26960968

Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder that shows a preference for the facial, shoulder and upper arm muscles. FSHD affects about one in 20-400,000 people, and no effective therapeutic strategies are known to halt disease progression or reverse muscle weakness or atrophy. Many genes may be incorrectly regulated in affected muscle tissue, but the mechanisms responsible for the progressive muscle weakness remain largely unknown. Although machine learning (ML) has made significant inroads in biomedical disciplines such as cancer research, no reports have yet addressed FSHD analysis using ML techniques. This study explores a specific FSHD data set from a ML perspective. We report results showing a very promising small group of genes that clearly separates FSHD samples from healthy samples. In addition to numerical prediction figures, we show data visualizations and biological evidence illustrating the potential usefulness of these results.


Gene Regulatory Networks/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Muscular Dystrophy, Facioscapulohumeral/genetics , Algorithms , Gene Expression Regulation , Humans , Machine Learning , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/physiopathology , Mutation , Protein Biosynthesis/genetics
...