Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Sports Physiol Perform ; 19(3): 299-306, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194958

RESUMEN

PURPOSE: Fran is one of the most popular CrossFit benchmark workouts used to control CrossFitters' improvements. Detailed physiological characterization of Fran is needed for a more specific evaluation of CrossFitters' training performance improvements. The aim of the study was to analyze the oxygen uptake (V˙O2) kinetics and characterize the energy system contributions and the degree of postexercise fatigue of the unbroken Fran. METHODS: Twenty trained CrossFitters performed Fran at maximal exertion. V˙O2 and heart-rate kinetics were assessed at baseline and during and post-Fran. Blood lactate and glucose concentrations and muscular fatigue were measured at baseline and in the recovery period. RESULTS: A marked increase in V˙O2 kinetics was observed at the beginning of Fran, remaining elevated until the end (V˙O2peak: 49.2 [3.7] mL·kg-1·min-1, V˙O2 amplitude: 35.8 [5.2] mL·kg-1·min-1, time delay: 4.7 [2.5] s and time constant: 23.7 [11.1] s; mean [SD]). Aerobic, anaerobic lactic, and alactic pathways accounted for 62% (4%), 26% (4%), and 12% (2%) of energy contribution. Reduction in muscle function in jumping ability (jump height: 8% [6%], peak force: 6% [4%], and maximum velocity: 4% [2%]) and plank prone test (46% [20%]) was observed in the recovery period. CONCLUSIONS: The Fran unbroken workout is a high-intensity effort associated with an elevated metabolic response. This pattern of energy response highlights the primary contribution of aerobic energy metabolism, even during short and very intense CrossFit workouts, and that recovery can take >24 hours due to cumulative fatigue.


Asunto(s)
Fatiga , Consumo de Oxígeno , Humanos , Consumo de Oxígeno/fisiología , Fatiga Muscular/fisiología , Oxígeno , Músculos
2.
Sensors (Basel) ; 24(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257605

RESUMEN

Our purpose was to characterize the oxygen uptake kinetics (VO2), energy systems contributions and total energy expenditure during a CrossFit® benchmark workout performed in the extreme intensity domain. Fourteen highly trained male CrossFitters, aged 28.3 ± 5.4 years, with height 177.8 ± 9.4 cm, body mass 87.9 ± 10.5 kg and 5.6 ± 1.8 years of training experience, performed the Isabel workout at maximal exertion. Cardiorespiratory variables were measured at baseline, during exercise and the recovery period, with blood lactate and glucose concentrations, including the ratings of perceived exertion, measured pre- and post-workout. The Isabel workout was 117 ± 10 s in duration and the VO2 peak was 47.2 ± 4.7 mL·kg-1·min-1, the primary component amplitude was 42.0 ± 6.0 mL·kg-1·min-1, the time delay was 4.3 ± 2.2 s and the time constant was 14.2 ± 6.0 s. The accumulated VO2 (0.6 ± 0.1 vs. 4.8 ± 1.0 L·min-1) value post-workout increased substantially when compared to baseline. Oxidative phosphorylation (40%), glycolytic (45%) and phosphagen (15%) pathways contributed to the 245 ± 25 kJ total energy expenditure. Despite the short ~2 min duration of the Isabel workout, the oxygen-dependent and oxygen-independent metabolism energy contributions to the total metabolic energy release were similar. The CrossFit® Isabel requires maximal effort and the pattern of physiological demands identifies this as a highly intensive and effective workout for developing fitness and conditioning for sports.


Asunto(s)
Benchmarking , Metabolismo Energético , Masculino , Humanos , Cinética , Ejercicio Físico , Oxígeno
3.
Eur J Clin Invest ; 53(11): e14069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525474

RESUMEN

BACKGROUND: The consumption of high-caloric diets strongly contributes to the development of non-communicable diseases (NCDs), including cardiovascular disease, the leading cause of mortality worldwide. Exercise (along with diet intervention) is one of the primary non-pharmacological approaches to promote a healthier lifestyle and counteract the rampant prevalence of NCDs. The present study evaluated the effects of exercise cessation after a short period training on the cardiac metabolic and mitochondrial function of female rats. METHODS: Seven-week-old female Sprague-Dawley rats were fed a control or a high-fat, high-sugar (HFHS) diet and, after 7 weeks, the animals were kept on a sedentary lifestyle or submitted to endurance exercise for 3 weeks (6 days per week, 20-60 min/day). The cardiac samples were analysed 8 weeks after exercise cessation. RESULTS: The consumption of the HFHS diet triggered impaired glucose tolerance, whereas the HFHS diet and physical exercise resulted in different responses in plasma adiponectin and leptin levels. Cardiac mitochondrial respiration efficiency was decreased by the HFHS diet consumption, which led to reduced ATP and increased NAD(P)H mitochondrial levels, which remained prevented by exercise 8 weeks after cessation. Exercise training-induced cardiac adaptations in redox balance, namely increased relative expression of Nrf2 and downstream antioxidant enzymes persist after an eight-week exercise cessation period. CONCLUSIONS: Endurance exercise modulated cardiac redox balance and mitochondrial efficiency in female rats fed a HFHS diet. These findings suggest that exercise may elicit cardiac adaptations crucial for its role as a non-pharmacological intervention for individuals at risk of developing NCDs.

4.
Int J Sports Physiol Perform ; 18(7): 786-792, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37225165

RESUMEN

AIM: To quantify the physiological demands and impact of muscle function t of the Fran workout, one of the most popular CrossFit benchmarks. METHODS: Twenty experienced CrossFitters-16 male: 29 (6) years old and 4 female: 26 (5) years old- performed 3 rounds (with 30-s rests in between) of 21-21, 15-15, and 9-9 front squats to overhead press plus pull-up repetitions. Oxygen uptake and heart rate were measured at baseline, during the workout, and in the recovery period. Rating of perceived exertion, blood lactate, and glucose concentrations were assessed at rest, during the intervals, and in the recovery period. Muscular fatigue was also monitored at rest and at 5 minutes, 30 minutes, and 24 hours postexercise. Repeated-measures analysis of variance was performed to compare time points. RESULTS: Aerobic (52%-29%) and anaerobic alactic (30%-23%) energy contributions decreased and the anaerobic lactic contribution increased (18%-48%) across the 3 rounds of the Fran workout. Countermovement jump height decreased by 8% (-12 to -3) mean change (95% CI), flight duration by 14% (-19 to -7), maximum velocity by 3% (-5 to -0.1), peak force 4% (-7 to -0.1), and physical performance (plank prone 47% [-54 to -38]) were observed. CONCLUSIONS: It appears that the Fran workout is a physically demanding activity that recruits energy from both aerobic and anaerobic systems. This severe-intensity workout evokes substantial postexercise fatigue and corresponding reduction in muscle function.


Asunto(s)
Fatiga Muscular , Niño , Preescolar , Femenino , Humanos , Masculino , Metabolismo Energético , Frecuencia Cardíaca/fisiología , Fatiga Muscular/fisiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37174268

RESUMEN

We characterized the physical and physiological profiles of high-level female Portuguese handball players and examined the relationships between their anthropometric characteristics, general motor performance and cardiopulmonary fitness. Twenty-four high-level female handball players with an average age of 23.6 ± 5.5 years, height of 173.6 ± 5.1 cm and body mass of 72.6 ± 9.1 kg volunteered to participate. A Pearson correlation test was used to assess the relationship between variables. Direct relationships were observed between the players' height and arm span (r = 0.741), as well as between their squat jump and countermovement jump performances with regard to body mass (r = 0.448 and 0.496, respectively). The 9 m jump shot has a large relationship with the 7 m standing throw (r = 0.786) and between left hand dynamometry and body mass index (r = 0.595). The 30 m sprint has a relationship with the 7 m standing throw (r = -0.526) and the 9 m jump throw (r = -0.551). Oxygen uptake has a relationship with the players' height (r = -0.482) and time limit (r = 0.513), while the fitness index has a relation to the players' height (r = -0.488) and arm span (r = -0.422). Our results should be considered when using physical testing to plan optimal physical training regimens in elite team handball.


Asunto(s)
Rendimiento Atlético , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Rendimiento Atlético/fisiología , Portugal , Aptitud Física/fisiología , Antropometría , Índice de Masa Corporal , Prueba de Esfuerzo
6.
J Sports Med Phys Fitness ; 63(1): 53-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35415998

RESUMEN

BACKGROUND: To analyze whether pre-exercise CHO+PRO vs. CHO intake distinctly influences running performance and metabolic biomarkers along a various of exercise intensities. METHODS: In a randomized, double blind, counterbalanced, crossover and placebo control design, 10 middle distance runners were tested in 3 occasions. After 10 h of fasting, participants ingested isovolumic beverages (0.75+0.25g·BW-1 of CHO+PRO, 1.0g·BW-1 of CHO and placebo control) 30 min before a treadmill running incremental protocol of 4 min steps until exhaustion. Venous blood was collected at fasting, 30 min after beverage ingestion and after the 3rd and 7th running steps. Oxygen uptake-related variables, including respiratory exchange ratio, heart rate, plasma glucose, insulin, glucagon, free fatty acids, blood lactate concentrations, gastrointestinal discomfort and rate of perceived exertion were measured. RESULTS: The addition of PRO to CHO had no influence on the measured variables, which did not differ between conditions along all incremental protocol intensities. The intake of CHO+PRO (compared to CHO) tended to decrease glycemia (106.5±21.3 vs. 113.6±26.5) and to increase insulinemia (14.4±15.1 vs. 12.7±10.8) at intensities close to maximum oxygen uptake. CONCLUSIONS: The addition of PRO to a pre-exercise CHO beverage had no impact on running performance and related metabolic variables at a wide spectrum of exercise intensities.


Asunto(s)
Consumo de Oxígeno , Carrera , Humanos , Resistencia Física/fisiología , Carbohidratos de la Dieta , Glucemia/metabolismo , Oxígeno , Carrera/fisiología , Bebidas , Ácido Láctico , Método Doble Ciego
7.
Int J Sports Med ; 44(14): 1043-1048, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36452984

RESUMEN

Empirical observations support that the addition of a plastic strip - also known as Randall foils - on the top edge of a rowing blade improves rowing efficiency during the cycle propulsive phase. The aim of the current study was to analyze the effect of using big blades with and without Randall foils on rowing performance. Twenty experienced rowers performed two 90 s tethered rowing bouts (with and without Randall foils) to assess their impact on force production and physiologic variables. All tests were randomized and a repeated measure design was used to compare experimental conditions. Higher values of peak and mean peak forces (479.4±134.7 vs. 423.2±153.0, d=0.83 and 376.5±101.4 vs. 337.1±113.3 N, d=0.68), peak oxygen uptake (47.9±7.5 vs. 45.3±7.3 mL∙kg-1∙min-1, d=0.19), peak blood lactate concentration (7.9±1.6 vs. 6.9±1.7 mmol∙L-1, d=0.16), blood lactate increasing speed (0.08±0.01 vs. 0.07±0.06 [(mmol·L-1)·s-1], d=0.27) and lactic anaerobic energy (27.4±7.9 vs. 23.4±8.1 kJ, d=0.23) were found for big blades with vs. without Randall foils, p<0.05. The current data suggest that the Randall foils can positively affect rowing performance.


Asunto(s)
Deportes Acuáticos , Humanos , Lactatos , Consumo de Oxígeno
8.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36616791

RESUMEN

Physical fatigue is a serious threat to the health and safety of firefighters. Its effects include decreased cognitive abilities and a heightened risk of accidents. Subjective scales and, recently, on-body sensors have been used to monitor physical fatigue among firefighters and safety-sensitive professionals. Considering the capabilities (e.g., noninvasiveness and continuous monitoring) and limitations (e.g., assessed fatiguing tasks and models validation procedures) of current approaches, this study aimed to develop a physical fatigue prediction model combining cardiorespiratory and thermoregulatory measures and machine learning algorithms within a firefighters' sample. Sensory data from heart rate, breathing rate and core temperature were recorded from 24 participants during an incremental running protocol. Various supervised machine learning algorithms were examined using 21 features extracted from the physiological variables and participants' characteristics to estimate four physical fatigue conditions: low, moderate, heavy and severe. Results showed that the XGBoosted Trees algorithm achieved the best outcomes with an average accuracy of 82% and accuracies of 93% and 86% for recognising the low and severe levels. Furthermore, this study evaluated different methods to assess the models' performance, concluding that the group cross-validation method presents the most practical results. Overall, this study highlights the advantages of using multiple physiological measures for enhancing physical fatigue modelling. It proposes a promising health and safety management tool and lays the foundation for future studies in field conditions.


Asunto(s)
Bomberos , Humanos , Ejercicio Físico , Fatiga , Aprendizaje Automático , Frecuencia Cardíaca/fisiología
9.
Artículo en Inglés | MEDLINE | ID: mdl-33498817

RESUMEN

The current study aimed to longitudinally evaluate anthropometric, physiological, and biomechanical variables related to middle-distance performance during a 45-week swimming training season. Thirty-four swimmers (age: 12.07 ± 1.14 years) performed a maximum of 400 m front crawl at the beginning (T1) and finish of the first macrocycle (T2, 15 weeks) and the finish of the second (T3, 18 weeks) and third macrocycles (T4, 12 weeks). Time-related variables, stroke rate (SR), stroke length (SL), and stroke index (SI) were recorded during the test, and blood lactate ([La]) and glucose ([Glu]) concentrations were measured post-exercise. The time of the 400 m effort decreased after each macrocycle (T2 vs. T1, 7.8 ± 5.6%; T3 vs. T2, 3.7 ± 3.1%; T4 vs. T3, 3.8 ± 3.4%; p < 0.01). Four hundred meter speed changes between T1 and T2 were positively related to variations in [La], [Glu], SL, and SI (r = 0.36-0.60, p < 0.05). Changes between T2 and T3 were related to SI only (r = 0.5, p < 0.05), and modifications between T3 and T4 were associated with SL and SI variations (r = 0.34 and 0.65, p < 0.05). These results indicate that a well-structured year plan including three macrocycles leads to a significant age-group swimming performance improvement, mostly connected with an increase in technical proficiency.


Asunto(s)
Rendimiento Atlético , Natación , Adolescente , Antropometría , Niño , Humanos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...