Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
ArXiv ; 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38903737

Deep neural networks have been applied to improve the image quality of fluorescence microscopy imaging. Previous methods are based on convolutional neural networks (CNNs) which generally require more time-consuming training of separate models for each new imaging experiment, impairing the applicability and generalization. Once the model is trained (typically with tens to hundreds of image pairs) it can then be used to enhance new images that are like the training data. In this study, we proposed a novel imaging-transformer based model, Convolutional Neural Network Transformer (CNNT), to outperform the CNN networks for image denoising. In our scheme we have trained a single CNNT based backbone model from pairwise high-low SNR images for one type of fluorescence microscope (instance structured illumination, iSim). Fast adaption to new applications was achieved by fine-tuning the backbone on only 5-10 sample pairs per new experiment. Results show the CNNT backbone and fine-tuning scheme significantly reduces the training time and improves the image quality, outperformed training separate models using CNN approaches such as - RCAN and Noise2Fast. Here we show three examples of the efficacy of this approach on denoising wide-field, two-photon and confocal fluorescence data. In the confocal experiment, which is a 5 by 5 tiled acquisition, the fine-tuned CNNT model reduces the scan time form one hour to eight minutes, with improved quality.

2.
Nat Commun ; 15(1): 93, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38168055

Lysosomes have emerged as critical regulators of cellular homeostasis. Here we show that the lysosomal protein TMEM55B contributes to restore cellular homeostasis in response to oxidative stress by three different mechanisms: (1) TMEM55B mediates NEDD4-dependent PLEKHM1 ubiquitination, causing PLEKHM1 proteasomal degradation and halting autophagosome/lysosome fusion; (2) TMEM55B promotes recruitment of components of the ESCRT machinery to lysosomal membranes to stimulate lysosomal repair; and (3) TMEM55B sequesters the FLCN/FNIP complex to facilitate translocation of the transcription factor TFE3 to the nucleus, allowing expression of transcriptional programs that enable cellular adaptation to stress. Knockout of tmem55 genes in zebrafish embryos increases their susceptibility to oxidative stress, causing early death of tmem55-KO animals in response to arsenite toxicity. Altogether, our work identifies a role for TMEM55B as a molecular sensor that coordinates autophagosome degradation, lysosomal repair, and activation of stress responses.


Autophagy , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Autophagy/genetics , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Oxidative Stress
3.
Cell Rep ; 40(13): 111404, 2022 09 27.
Article En | MEDLINE | ID: mdl-36170835

Dysregulation of alternative splicing in prostate cancer is linked to transcriptional programs activated by AR, ERG, FOXA1, and MYC. Here, we show that FOXA1 functions as the primary orchestrator of alternative splicing dysregulation across 500 primary and metastatic prostate cancer transcriptomes. We demonstrate that FOXA1 binds to the regulatory regions of splicing-related genes, including HNRNPK and SRSF1. By controlling trans-acting factor expression, FOXA1 exploits an "exon definition" mechanism calibrating alternative splicing toward dominant isoform production. This regulation especially impacts splicing factors themselves and leads to a reduction of nonsense-mediated decay (NMD)-targeted isoforms. Inclusion of the NMD-determinant FLNA exon 30 by FOXA1-controlled oncogene SRSF1 promotes cell growth in vitro and predicts disease recurrence. Overall, we report a role for FOXA1 in rewiring the alternative splicing landscape in prostate cancer through a cascade of events from chromatin access, to splicing factor regulation, and, finally, to alternative splicing of exons influencing patient survival.


Alternative Splicing , Prostatic Neoplasms , Alternative Splicing/genetics , Chromatin , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Neoplasm Recurrence, Local , Prostatic Neoplasms/genetics , RNA Splicing Factors/metabolism , Serine-Arginine Splicing Factors/metabolism , Trans-Activators/metabolism
4.
Front Cell Dev Biol ; 8: 609683, 2020.
Article En | MEDLINE | ID: mdl-33490073

Response and adaptation to stress are critical for the survival of all living organisms. The regulation of the transcriptional machinery is an important aspect of these complex processes. The members of the microphthalmia (MiT/TFE) family of transcription factors, apart from their involvement in melanocyte biology, are emerging as key players in a wide range of cellular functions in response to a plethora of internal and external stresses. The MiT/TFE proteins are structurally related and conserved through evolution. Their tissue expression and activities are highly regulated by alternative splicing, promoter usage, and posttranslational modifications. Here, we summarize the functions of MiT/TFE proteins as master transcriptional regulators across evolution and discuss the contribution of animal models to our understanding of the various roles of these transcription factors. We also highlight the importance of deciphering transcriptional regulatory mechanisms in the quest for potential therapeutic targets for human diseases, such as lysosomal storage disorders, neurodegeneration, and cancer.

5.
Dis Model Mech ; 12(12)2019 12 20.
Article En | MEDLINE | ID: mdl-31727854

Mutations in the gene AK2 are responsible for reticular dysgenesis (RD), a rare and severe form of primary immunodeficiency in children. RD patients have a severely shortened life expectancy and without treatment die, generally from sepsis soon after birth. The only available therapeutic option for RD is hematopoietic stem cell transplantation (HSCT). To gain insight into the pathophysiology of RD, we previously created zebrafish models for Ak2 deficiencies. One of the clinical features of RD is hearing loss, but its pathophysiology and causes have not been determined. In adult mammals, sensory hair cells of the inner ear do not regenerate; however, their regeneration has been observed in several non-mammalian vertebrates, including zebrafish. Therefore, we used our RD zebrafish models to determine whether Ak2 deficiency affects sensory organ development and/or hair cell regeneration. Our studies indicated that Ak2 is required for the correct development, survival and regeneration of sensory hair cells. Interestingly, Ak2 deficiency induces the expression of several oxidative stress markers and it triggers an increased level of cell death in the hair cells. Finally, we show that glutathione treatment can partially rescue hair cell development in the sensory organs in our RD models, pointing to the potential use of antioxidants as a therapeutic treatment supplementing HSCT to prevent or ameliorate sensorineural hearing deficits in RD patients.


Adenylate Kinase/metabolism , Gene Expression Regulation, Developmental , Hair Cells, Auditory/physiology , Hearing Loss, Sensorineural/metabolism , Leukopenia/metabolism , Regeneration , Severe Combined Immunodeficiency/metabolism , Alleles , Animals , Animals, Genetically Modified , Cell Death , Cell Line , Crosses, Genetic , Disease Models, Animal , Glutathione/metabolism , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cell Transplantation , Leukopenia/genetics , Microscopy, Confocal , Oxidative Stress , Phenotype , Severe Combined Immunodeficiency/genetics , Stress, Physiological , Zebrafish
6.
Front Genet ; 9: 348, 2018.
Article En | MEDLINE | ID: mdl-30233640

Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.

7.
NPJ Regen Med ; 3: 11, 2018.
Article En | MEDLINE | ID: mdl-29872546

Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

8.
J Exp Med ; 212(8): 1185-202, 2015 Jul 27.
Article En | MEDLINE | ID: mdl-26150473

Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD.


Adenylate Kinase/metabolism , Hematopoietic Stem Cells/physiology , Leukopenia/enzymology , Leukopenia/physiopathology , Oxidative Stress/physiology , Pluripotent Stem Cells/physiology , Severe Combined Immunodeficiency/enzymology , Severe Combined Immunodeficiency/physiopathology , Acridine Orange , Adenylate Kinase/deficiency , Animals , Antioxidants/pharmacology , Apoptosis/physiology , Azo Compounds , Base Sequence , Cell Differentiation/drug effects , Computational Biology , DNA Primers/genetics , Immunohistochemistry , In Situ Nick-End Labeling , Molecular Sequence Data , Naphthalenes , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Zebrafish
9.
PLoS One ; 8(2): e57239, 2013.
Article En | MEDLINE | ID: mdl-23451191

Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich) or the CoDA (context-dependent assembly) platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1) evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2) a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5%) when compared to CopmoZr ZFNs (9-98%). This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.


Gene Targeting , Mutagenesis , Zinc Fingers , Animals , Base Sequence , DNA Primers , Founder Effect , Germ Cells , Heterozygote , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , Zebrafish
10.
Arterioscler Thromb Vasc Biol ; 32(7): 1563-72, 2012 Jul.
Article En | MEDLINE | ID: mdl-22516065

OBJECTIVE: The goal of this study was to determine the in vivo functions of the synaptic proteins neurexins and neuroligins in embryonic vascular system development using zebrafish as animal model. METHODS AND RESULTS: In the present study, we show that the knockdown of the α-form of neurexin 1a induces balance defects and reduced locomotory activity, whereas ß-neurexin 1a and neuroligin 1 morphants present defects in sprouting angiogenesis and vascular remodeling, in particular in the caudal plexus and subintestinal vessels. Coinjection of low doses of morpholinos for ß-neurexin 1a and neuroligin 1 together or in combination with morpholinos targeting the -heparin--binding isoforms of vascular endothelial growth factor A (encoded by the VEGFAb gene) recapitulates the observed abnormalities, suggesting synergistic activity of these molecules. Similar coinjection experiments with morpholinos, targeting the enzyme heparan sulfate 6-O-sulfotransferase 2, confirm the presence of a functional correlation between extracellular matrix maturation and ß-neurexin 1a or neuroligin 1. CONCLUSIONS: Our data represent the first in vivo evidence of the role of neurexin and neuroligin in embryonic blood vessel formation and provide insights into their mechanism of action.


Blood Vessels/embryology , Cell Adhesion Molecules, Neuronal/physiology , Glycoproteins/physiology , Heparin/metabolism , Neovascularization, Physiologic , Neuropeptides/physiology , Vascular Endothelial Growth Factor A/physiology , Zebrafish/embryology , Animals , Extracellular Matrix/physiology , Sulfotransferases/physiology
11.
Cell Mol Life Sci ; 68(16): 2655-66, 2011 Aug.
Article En | MEDLINE | ID: mdl-21394644

The scientific interest in the family of the so-called nervous vascular parallels has been growing steadily for the past 15 years, either by addition of new members to the group or, lately, by deepening the analysis of established concepts and mediators. Proteins governing both neurons and vascular cells are known to be involved in events such as cell fate determination and migration/guidance but not in the last and apparently most complex step of nervous system development, the formation and maturation of synapses. Hence, the recent addition to this family of the specific synaptic proteins, Neurexin and Neuroligin, is a double innovation. The two proteins, which were thought to be "simple" adhesive links between the pre- and post-synaptic sides of chemical synapses, are in fact extremely complex and modulate the most subtle synaptic activities. We will discuss the relevant data and the intriguing challenge of transferring synaptic activities to vascular functions.


Cell Adhesion Molecules, Neuronal/physiology , Neural Cell Adhesion Molecules/physiology , Synapses/metabolism , Alternative Splicing , Animals , Blood Vessels/metabolism , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila , Evolution, Molecular , Mice , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism
12.
Dev Dyn ; 239(2): 688-702, 2010 Feb.
Article En | MEDLINE | ID: mdl-20034102

Neuroligins constitute a family of transmembrane proteins localized at the postsynaptic side of both excitatory and inhibitory synapses of the central nervous system. They are involved in synaptic function and maturation and recent studies have linked mutations in specific human Neuroligins to mental retardation and autism. We isolated the human Neuroligin homologs in Danio rerio. Next, we studied their gene structures and we reconstructed the evolution of the Neuroligin genes across vertebrate phyla. Using reverse-transcriptase polymerase chain reaction, we analyzed the expression and alternative splicing pattern of each gene during zebrafish embryonic development and in different adult organs. By in situ hybridization, we analyzed the temporal and spatial expression pattern during embryonic development and larval stages and we found that zebrafish Neuroligins are expressed throughout the nervous system. Globally, our results indicate that, during evolution, specific subfunctionalization events occurred within paralogous members of this gene family in zebrafish.


Alternative Splicing , Evolution, Molecular , Multigene Family , Nerve Tissue Proteins/genetics , Zebrafish/genetics , Amino Acid Sequence , Animals , Brain/embryology , Brain/metabolism , Cloning, Molecular , Embryonic Development , Exons , Gene Expression Profiling , Humans , In Situ Hybridization , Introns , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Phylogeny , Protein Structure, Secondary , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish/embryology , Zebrafish/metabolism
13.
Proc Natl Acad Sci U S A ; 106(49): 20782-7, 2009 Dec 08.
Article En | MEDLINE | ID: mdl-19926856

Unlike other neuronal counterparts, primary synaptic proteins are not known to be involved in vascular physiology. Here, we demonstrate that neurexins and neuroligins, which constitute large and complex families of fundamental players in synaptic activity, are produced and processed by endothelial and vascular smooth muscle cells throughout the vasculature. Moreover, they are dynamically regulated during vessel remodeling and form endogenous complexes in large vessels as well as in the brain. We used the chicken chorioallantoic membrane as a system to pursue functional studies and demonstrate that a monoclonal recombinant antibody against beta-neurexin inhibits angiogenesis, whereas exogenous neuroligin has a role in promoting angiogenesis. Finally, as an insight into the mechanism of action of beta-neurexin, we show that the anti-beta-neurexin antibody influences vessel tone in isolated chicken arteries. Our finding strongly supports the idea that even the most complex and plastic events taking place in the nervous system (i.e., synaptic activity) share molecular cues with the vascular system.


Arteries/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Neural Cell Adhesion Molecules/metabolism , Synapses/metabolism , Animals , Antibodies/pharmacology , Arteries/cytology , Arteries/drug effects , Chickens , Chorioallantoic Membrane/cytology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/metabolism , Humans , In Vitro Techniques , Mice , Molecular Sequence Data , Muscle Contraction/drug effects , Neovascularization, Physiologic/drug effects , Synapses/drug effects
14.
Mol Biol Evol ; 24(1): 236-52, 2007 Jan.
Article En | MEDLINE | ID: mdl-17041151

Neurexins constitute a family of proteins originally identified as synaptic transmembrane receptors for a spider venom toxin. In mammals, the 3 known Neurexin genes present 2 alternative promoters that drive the synthesis of a long (alpha) and a short (beta) form and contain different sites of alternative splicing (AS) that can give rise to thousands of different transcripts. To date, very little is known about the significance of this variability, except for the modulation of binding to some of the Neurexin ligands. Although orthologs of Neurexins have been isolated in invertebrates, these genes have been studied mostly in mammals. With the aim of investigating their functions in lower vertebrates, we chose Danio rerio as a model because of its increasing importance in comparative biology. We have isolated 6 zebrafish homologous genes, which are highly conserved at the structural level and display a similar regulation of AS, despite about 450 Myr separating the human and zebrafish species. Our data indicate a strong selective pressure at the exonic level and on the intronic borders, in particular on the regulative intronic sequences that flank the exons subject to AS. Such a selective pressure could help conserve the regulation and consequently the function of these genes along the vertebrates evolutive tree. AS analysis during development shows that all genes are expressed and finely regulated since the earliest stages of development, but mark an increase after the 24-h stage that corresponds to the beginning of synaptogenesis. Moreover, we found that specific isoforms of a zebrafish Neurexin gene (nrxn1a) are expressed in the adult testis and in the earliest stages of development, before the beginning of zygotic transcription, indicating a potential delivery of paternal RNA to the embryo. Our analysis suggests the existence of possible new functions for Neurexins, serving as the basis for novel approaches to the functional studies of this complex neuronal protein family and more in general to the understanding of the AS mechanism in low vertebrates.


Evolution, Molecular , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Zebrafish Proteins/genetics , Zebrafish/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Cloning, Molecular , Genome , Molecular Sequence Data , Nerve Tissue Proteins/chemistry , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Alignment , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
15.
Am J Pathol ; 167(1): 193-211, 2005 Jul.
Article En | MEDLINE | ID: mdl-15972964

Integrin alpha5beta1 is among the proteins overexpressed on tumor vessels and is a potential target for diagnostics and therapeutics. Here, we mapped the distribution of alpha5beta1 integrin in three murine tumor models and identified sites of expression that are rapidly accessible to intravascular antibodies. When examined by conventional immunohistochemistry, alpha5beta1 integrin expression was strong on most blood vessels in RIP-Tag2 transgenic mouse tumors, adenomatous polyposis coli (apc) mouse adenomas, and implanted MCa-IV mammary carcinomas. Expression increased during malignant progression in RIP-Tag2 mice. However, immunoreactivity was also strong in normal pancreatic ducts, intestinal smooth muscle, and several other sites. To determine which sites of expression were rapidly accessible from the bloodstream, we intravenously injected anti-alpha5beta1 integrin antibody and 10 minutes to 24 hours later examined the amount and distribution of labeling. The injected antibody strongly labeled tumor vessels at all time points but did not label most normal blood vessels or gain access to pancreatic ducts or intestinal smooth muscle. Intense vascular labeling by anti-alpha5beta1 integrin antibody co-localized with the uniform CD31 immunoreactivity of tumor vessels and contrasted sharply with the patchy accumulation of nonspecific IgG at sites of leakage. This strategy of injecting antibodies revealed the uniform overexpression and rapid accessibility of alpha5beta1 integrin on tumor vessels and may prove useful in assessing other potential therapeutic targets in cancer.


Biomarkers, Tumor/analysis , Blood Vessels/metabolism , Integrin alpha5beta1/metabolism , Neoplasms/blood supply , Neovascularization, Pathologic/metabolism , Animals , Disease Models, Animal , Immunohistochemistry , Mice , Microscopy, Fluorescence , Neoplasm Invasiveness/pathology , Neovascularization, Pathologic/pathology
...