Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(9): 2839-2845, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38395430

RESUMEN

Semiconductor quantum dots are promising candidates for the generation of nonclassical light. Coupling a quantum dot to a device capable of providing polarization-selective enhancement of optical transitions is highly beneficial for advanced functionalities, such as efficient resonant driving schemes or applications based on optical cyclicity. Here, we demonstrate broadband polarization-selective enhancement by coupling a quantum dot emitting in the telecom O-band to an elliptical bullseye resonator. We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9 ± 0.6, and count rates up to 3 MHz. Furthermore, we present a measurement of two-photon interference without any external polarization filtering. Finally, we demonstrate compatibility with compact Stirling cryocoolers by operating the device at temperatures up to 40 K. These results represent an important step toward practical integration of optimal quantum dot photon sources in deployment-ready setups.

2.
ACS Nano ; 17(16): 16080-16088, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37523736

RESUMEN

Epitaxially grown self-assembled semiconductor quantum dots (QDs) with atom-like optical properties have emerged as the best choice for single-photon sources required for the development of quantum technology and quantum networks. Nondestructive selection of a single QD having desired structural, compositional, and optical characteristics is essential to obtain noise-free, fully indistinguishable single or entangled photons from single-photon emitters. Here, we show that the structural orientations and local compositional inhomogeneities within a single QD and the surrounding wet layer can be probed in a screening fashion by scanning X-ray diffraction microscopy and X-ray fluorescence with a few tens of nanometers-sized synchrotron radiation beam. The presented measurement protocol can be used to cull the best single QD from the enormous number of self-assembled dots grown simultaneously. The obtained results show that the elemental composition and resultant strain profiles of a QD are sensitive to in-plane crystallographic directions. We also observe that lattice expansion after a certain composition-limit introduces shear strain within a QD, enabling the possibility of controlled chiral-QD formation. Nanoscale chirality and compositional anisotropy, contradictory to common assumptions, need to be incorporated into existing theoretical models to predict the optical properties of single-photon sources and to further tune the epitaxial growth process of self-assembled quantum structures.

3.
ACS Photonics ; 10(6): 1756-1768, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37363631

RESUMEN

Delivery and focusing of radiation requires a variety of optical elements such as waveguides and mirrors or lenses. Heretofore, they were used separately, the former for radiation delivery, the latter for focusing. Here, we show that cylindrical multimode waveguides can both deliver and simultaneously focus radiation, without any external lenses or parabolic mirrors. We develop an analytical, ray-optical model to describe radiation propagation within and after the end of cylindrical multimode waveguides and demonstrate the focusing effect theoretically and experimentally at terahertz frequencies. In the focused spot, located at a distance of several millimeters to a few centimeters away from the waveguide end, typical for focal lengths in optical setups, we achieve a more than 8.4× higher intensity than the cross-sectional average intensity and compress the half-maximum spot area of the incident beam by a factor of >15. Our results represent the first practical realization of a focusing system consisting of only a single cylindrical multimode waveguide, that delivers radiation from one focused spot into another focused spot in free space, with focal distances that are much larger than both the radiation wavelength and the waveguide radius. The results enable design and optimization of cylindrical waveguide-containing systems and demonstrate a precise optical characterization method for cylindrical structures and objects.

4.
ACS Nano ; 17(6): 6103-6112, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36883532

RESUMEN

The on-chip integration of two-dimensional nanomaterials, having exceptional optical, electrical, and thermal properties, with terahertz (THz) quantum cascade lasers (QCLs) has recently led to wide spectral tuning, nonlinear high-harmonic generation, and pulse generation. Here, we transfer a large area (1 × 1 cm2) multilayer graphene (MLG), to lithographically define a microthermometer, on the bottom contact of a single-plasmon THz QCL to monitor, in real-time, its local lattice temperature during operation. We exploit the temperature dependence of the MLG electrical resistance to measure the local heating of the QCL chip. The results are further validated through microprobe photoluminescence experiments, performed on the front-facet of the electrically driven QCL. We extract a heterostructure cross-plane conductivity of k⊥= 10.2 W/m·K, in agreement with previous theoretical and experimental reports. Our integrated system endows THz QCLs with a fast (∼30 ms) temperature sensor, providing a tool to reach full electrical and thermal control on laser operation. This can be exploited, inter alia, to stabilize the emission of THz frequency combs, with potential impact on quantum technologies and high-precision spectroscopy.

5.
Nano Lett ; 23(5): 1705-1710, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790264

RESUMEN

Imposing an external periodic electrostatic potential to the electrons confined in a quantum well makes it possible to engineer synthetic two-dimensional band structures, with electronic properties different from those in the host semiconductor. Here we report the fabrication and study of a tunable triangular artificial lattice on a GaAs/AlGaAs heterostructure where it is possible to transform from the original GaAs band structure and a circular Fermi surface to a new band structure with multiple artificial Fermi surfaces simply by altering a gate bias. For weak electrostatic modulation magnetotransport measurements reveal multiple quantum oscillations and commensurability oscillations due to the electron scattering from the artificial lattice. Increasing the strength of the modulation reveals new commensurability oscillations of the electrons from the artificial Fermi surface scattering from the triangular artificial lattice. These results show that low disorder gate-tunable lateral superlattices can be used to form artificial two-dimensional crystals with designer electronic properties.

6.
Adv Sci (Weinh) ; 10(9): e2206824, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36707499

RESUMEN

Mode locking, the self-starting synchronous oscillation of electromagnetic modes in a laser cavity, is the primary way to generate ultrashort light pulses. In random lasers, without a cavity, mode-locking, the nonlinear coupling amongst low spatially coherent random modes, can be activated via optical pumping, even without the emission of short pulses. Here, by exploiting the combination of the inherently giant third-order χ(3) nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene, the authors demonstrate mode-locking in surface-emitting electrically pumped random quantum cascade lasers at terahertz frequencies. This is achieved by either lithographically patterning a multilayer graphene film to define a surface random pattern of light scatterers, or by coupling on chip a saturable absorber graphene reflector. Intermode beatnote mapping unveils self-induced phase-coherence between naturally incoherent random modes. Self-mixing intermode spectroscopy reveals phase-locked random modes. This is an important milestone in the physics of disordered systems. It paves the way to the development of a new generation of miniaturized, electrically pumped mode-locked light sources, ideal for broadband spectroscopy, multicolor speckle-free imaging applications, and reservoir quantum computing.

7.
Sci Adv ; 8(24): eabm2781, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35714181

RESUMEN

An electron is usually considered to have only one form of kinetic energy, but could it have more, for its spin and charge, by exciting other electrons? In one dimension (1D), the physics of interacting electrons is captured well at low energies by the Tomonaga-Luttinger model, yet little has been observed experimentally beyond this linear regime. Here, we report on measurements of many-body modes in 1D gated wires using tunneling spectroscopy. We observe two parabolic dispersions, indicative of separate Fermi seas at high energies, associated with spin and charge excitations, together with the emergence of two additional 1D "replica" modes that strengthen with decreasing wire length. The interaction strength is varied by changing the amount of 1D intersubband screening by more than 45%. Our findings not only demonstrate the existence of spin-charge separation in the whole energy band outside the low-energy limit of the Tomonaga-Luttinger model but also set a constraint on the validity of the newer nonlinear Tomonaga-Luttinger theory.

8.
Sci Adv ; 8(15): eabi8398, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427162

RESUMEN

Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli-electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the "in-plane photoelectric effect," provides an opportunity for efficient direct detection across the entire terahertz range.

9.
ACS Nano ; 16(2): 2833-2842, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35109656

RESUMEN

Magnetic field-driven insulating states in graphene are associated with samples of very high quality. Here, this state is shown to exist in monolayer graphene grown by chemical vapor deposition (CVD) and wet transferred on Al2O3 without encapsulation with hexagonal boron nitride (h-BN) or other specialized fabrication techniques associated with superior devices. Two-terminal measurements are performed at low temperature using a GaAs-based multiplexer. During high-throughput testing, insulating properties are found in a 10 µm long graphene device which is 10 µm wide at one contact with an ≈440 nm wide constriction at the other. The low magnetic field mobility is ≈6000 cm2 V-1 s-1. An energy gap induced by the magnetic field opens at charge neutrality, leading to diverging resistance and current switching on the order of 104 with DC bias voltage at an approximate electric field strength of ≈0.04 V µm-1 at high magnetic field. DC source-drain bias measurements show behavior associated with tunneling through a potential barrier and a transition between direct tunneling at low bias to Fowler-Nordheim tunneling at high bias from which the tunneling region is estimated to be on the order of ≈100 nm. Transport becomes activated with temperature from which the gap size is estimated to be 2.4 to 2.8 meV at B = 10 T. Results suggest that a local electronically high quality region exists within the constriction, which dominates transport at high B, causing the device to become insulating and act as a tunnel junction. The use of wet transfer fabrication techniques of CVD material without encapsulation with h-BN and the combination with multiplexing illustrates the convenience of these scalable and reasonably simple methods to find high quality devices for fundamental physics research and with functional properties.

10.
Nat Commun ; 13(1): 667, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115494

RESUMEN

Two-dimensional electron gases (2DEGs) with high mobility, engineered in semiconductor heterostructures host a variety of ordered phases arising from strong correlations, which emerge at sufficiently low temperatures. The 2DEG can be further controlled by surface gates to create quasi-one dimensional systems, with potential spintronic applications. Here we address the long-standing challenge of cooling such electrons to below 1 mK, potentially important for identification of topological phases and spin correlated states. The 2DEG device was immersed in liquid 3He, cooled by the nuclear adiabatic demagnetization of copper. The temperature of the 2D electrons was inferred from the electronic noise in a gold wire, connected to the 2DEG by a metallic ohmic contact. With effective screening and filtering, we demonstrate a temperature of 0.9 ± 0.1 mK, with scope for significant further improvement. This platform is a key technological step, paving the way to observing new quantum phenomena, and developing new generations of nanoelectronic devices exploiting correlated electron states.

11.
Opt Express ; 29(21): 33602-33614, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809170

RESUMEN

Quantum cascade lasers (QCLs) represent a most promising compact source at terahertz (THz) frequencies, but efficiency of their continuous wave (CW) operation still needs to be improved to achieve large-scale exploitation. Here, we demonstrate highly efficient operation of a subwavelength microcavity laser consisting of two evanescently coupled whispering gallery microdisk resonators. Exploiting a dual injection scheme for the laser cavity, single mode CW vertical emission at 3.3 THz is obtained at 10 K with 6.4 mA threshold current and 145 mW/A slope efficiency up to 320 µW emitted power measured in quasi-CW mode. The tuning of the laser emission directionality is also obtained by independently varying the pumping strength between the microdisks. By connecting the resonators through a suspended gold bridge, the laser out-coupling efficiency in the vertical direction is strongly enhanced. Owing to the high brightness, low-power consumption and CW operation, the proposed microcavity laser design could allow the realization of high-performance CW THz QCLs ready for massive parallelization.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34835762

RESUMEN

Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device's optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature (Tc) of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.

13.
Materials (Basel) ; 14(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361488

RESUMEN

Plasmonics, as a rapidly growing research field, provides new pathways to guide and modulate highly confined light in the microwave-to-optical range of frequencies. We demonstrated a plasmonic slot waveguide, at the nanometer scale, based on the high-transition-temperature (Tc) superconductor Bi2Sr2CaCu2O8+δ (BSCCO), to facilitate the manifestation of chip-scale millimeter wave (mm-wave)-to-terahertz (THz) integrated circuitry operating at cryogenic temperatures. We investigated the effect of geometrical parameters on the modal characteristics of the BSCCO plasmonic slot waveguide between 100 and 800 GHz. In addition, we investigated the thermal sensing of the modal characteristics of the nanoscale superconducting slot waveguide and showed that, at a lower frequency, the fundamental mode of the waveguide had a larger propagation length, a lower effective refractive index, and a strongly localized modal energy. Moreover, we found that our device offered a larger SPP propagation length and higher field confinement than the gold plasmonic waveguides at broad temperature ranges below BSCCO's Tc. The proposed device can provide a new route toward realizing cryogenic low-loss photonic integrated circuitry at the nanoscale.

14.
Phys Rev Lett ; 126(20): 207701, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110191

RESUMEN

We report on ballistic Hall photovoltammetry as a contactless probe of localized spin excitations. Spins resonating in the near field of a two-dimensional electron system are shown to induce a long range electromotive force that we calculate. We use this coupling mechanism to detect the spin wave eigenmodes of a single ferromagnet of sub-100 nm size. The high sensitivity of this detection technique, 380 spins/sqrt[Hz], and its noninvasiveness present advantages for probing magnetization dynamics and spin transport.

15.
Opt Express ; 28(24): 36838-36848, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379768

RESUMEN

Quantum networks are essential for realising distributed quantum computation and quantum communication. Entangled photons are a key resource, with applications such as quantum key distribution, quantum relays, and quantum repeaters. All components integrated in a quantum network must be synchronised and therefore comply with a certain clock frequency. In quantum key distribution, the most mature technology, clock rates have reached and exceeded 1GHz. Here we show the first electrically pulsed sub-Poissonian entangled photon source compatible with existing fiber networks operating at this clock rate. The entangled LED is based on InAs/InP quantum dots emitting in the main telecom window, with a multi-photon probability of less than 10% per emission cycle and a maximum entanglement fidelity of 89%. We use this device to demonstrate GHz clocked distribution of entangled qubits over an installed fiber network between two points 4.6km apart.

16.
ACS Nano ; 14(11): 15293-15305, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33104341

RESUMEN

We present multiplexer methodology and hardware for nanoelectronic device characterization. This high-throughput and scalable approach to testing large arrays of nanodevices operates from room temperature to milli-Kelvin temperatures and is universally compatible with different materials and integration techniques. We demonstrate the applicability of our approach on two archetypal nanomaterials-graphene and semiconductor nanowires-integrated with a GaAs-based multiplexer using wet or dry transfer methods. A graphene film grown by chemical vapor deposition is transferred and patterned into an array of individual devices, achieving 94% yield. Device performance is evaluated using data fitting methods to obtain electrical transport metrics, showing mobilities comparable to nonmultiplexed devices fabricated on oxide substrates using wet transfer techniques. Separate arrays of indium-arsenide nanowires and micromechanically exfoliated monolayer graphene flakes are transferred using pick-and-place techniques. For the nanowire array mean values for mobility µFE = 880/3180 cm2 V-1 s-1 (lower/upper bound), subthreshold swing 430 mV dec-1, and on/off ratio 3.1 decades are extracted, similar to nonmultiplexed devices. In another array, eight mechanically exfoliated graphene flakes are transferred using techniques compatible with fabrication of two-dimensional superlattices, with 75% yield. Our results are a proof-of-concept demonstration of a versatile platform for scalable fabrication and cryogenic characterization of nanomaterial device arrays, which is compatible with a broad range of nanomaterials, transfer techniques, and device integration strategies from the forefront of quantum technology research.

17.
Sci Adv ; 6(15): eaaz4948, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32300658

RESUMEN

Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.

18.
Nat Commun ; 11(1): 917, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060278

RESUMEN

The long-distance quantum transfer between electron-spin qubits in semiconductors is important for realising large-scale quantum computing circuits. Electron-spin to photon-polarisation conversion is a promising technology for achieving free-space or fibre-coupled quantum transfer. In this work, using only regular lithography techniques on a conventional 15 nm GaAs quantum well, we demonstrate acoustically-driven generation of single photons from single electrons, without the need for a self-assembled quantum dot. In this device, a single electron is carried in a potential minimum of a surface acoustic wave (SAW) and is transported to a region of holes to form an exciton. The exciton then decays and creates a single optical photon within 100 ps. This SAW-driven electroluminescence, without optimisation, yields photon antibunching with g(2)(0) = 0.39 ± 0.05 in the single-electron limit (g(2)(0) = 0.63 ± 0.03 in the raw histogram). Our work marks the first step towards electron-to-photon (spin-to-polarisation) qubit conversion for scaleable quantum computing architectures.

19.
Light Sci Appl ; 8: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044073

RESUMEN

Random lasers are a class of devices in which feedback arises from multiple elastic scattering in a highly disordered structure, providing an almost ideal light source for artefact-free imaging due to achievable low spatial coherence. However, for many applications ranging from sensing and spectroscopy to speckle-free imaging, it is essential to have high-radiance sources operating in continuous-wave (CW). In this paper, we demonstrate CW operation of a random laser using an electrically pumped quantum-cascade laser gain medium in which a bi-dimensional (2D) random distribution of air holes is patterned into the top metal waveguide. We obtain a highly collimated vertical emission at ~3 THz, with a 430 GHz bandwidth, device operation up to 110 K, peak (pulsed) power of 21 mW, and CW emission of 1.7 mW. Furthermore, we show that an external cavity formed with a movable mirror can be used to tune a random laser, obtaining continuous frequency tuning over 11 GHz.

20.
Opt Express ; 27(8): 10692-10704, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052924

RESUMEN

Using a sub-millimeter exciton-polariton waveguide suitable for integrated photonics, we experimentally demonstrate nonlinear modulation of pico-Joule pulses at the same time as amplification sufficient to compensate the system losses. By comparison with a numerical model we explain the observed interplay of gain and nonlinearity as amplification of the interacting polariton field by stimulated scattering from an incoherent continuous-wave reservoir that is depleted by the pulses. This combination of gain and giant ultrafast nonlinearity operating on picosecond pulses has the potential to open up new directions in low-power all-optical information processing and nonlinear photonic simulation of conservative and driven-dissipative systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA