Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 82(22): 4262-4276.e5, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36347258

RESUMEN

BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.


Asunto(s)
Cisteína , Proteínas Proto-Oncogénicas B-raf , Humanos , Cisteína/genética , Proteínas Proto-Oncogénicas B-raf/genética , Dominios Proteicos , Mutación , Síndrome
2.
Cancer Discov ; 11(6): 1411-1423, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33495197

RESUMEN

Lung squamous cell carcinoma (LSCC) is the second most prevalent type of lung cancer. Despite extensive genomic characterization, no targeted therapies are approved for the treatment of LSCC. Distal amplification of the 3q chromosome is the most frequent genomic alteration in LSCC, and there is an urgent need to identify efficacious druggable targets within this amplicon. We identify the protein kinase TNIK as a therapeutic target in LSCC. TNIK is amplified in approximately 50% of LSCC cases. TNIK genetic depletion or pharmacologic inhibition reduces the growth of LSCC cells in vitro and in vivo. In addition, TNIK inhibition showed antitumor activity and increased apoptosis in established LSCC patient-derived xenografts. Mechanistically, we identified the tumor suppressor Merlin/NF2 as a novel TNIK substrate and showed that TNIK and Merlin are required for the activation of focal adhesion kinase. In conclusion, our data identify targeting TNIK as a potential therapeutic strategy in LSCC. SIGNIFICANCE: Targeted therapies have not yet been approved for the treatment of LSCC, due to lack of identification of actionable cancer drivers. We define TNIK catalytic activity as essential for maintaining LSCC viability and validate the antitumor efficacy of TNIK inhibition in preclinical models of LSCC.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Ratones , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética
3.
Mol Cell ; 76(6): 872-884.e5, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31606273

RESUMEN

The Ras GTPases are frequently mutated in human cancer, and, although the Raf kinases are essential effectors of Ras signaling, the tumorigenic properties of specific Ras-Raf complexes are not well characterized. Here, we examine the ability of individual Ras and Raf proteins to interact in live cells using bioluminescence resonance energy transfer (BRET) technology. We find that C-Raf binds all mutant Ras proteins with high affinity, whereas B-Raf exhibits a striking preference for mutant K-Ras. This selectivity is mediated by the acidic, N-terminal segment of B-Raf and requires the K-Ras polybasic region for high-affinity binding. In addition, we find that C-Raf is critical for mutant H-Ras-driven signaling and that events stabilizing B-Raf/C-Raf dimerization, such as Raf inhibitor treatment or certain B-Raf mutations, can allow mutant H-Ras to engage B-Raf with increased affinity to promote tumorigenesis, thus revealing a previously unappreciated role for C-Raf in potentiating B-Raf function.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Neoplasias/enzimología , Quinasas raf/metabolismo , Proteínas ras/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Mutación , Células 3T3 NIH , Neoplasias/genética , Neoplasias/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/genética , Esferoides Celulares , Quinasas raf/genética , Proteínas ras/genética
4.
Dev Cell ; 50(2): 229-246.e7, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31204173

RESUMEN

Serum starvation stimulates cilia growth in cultured cells, yet serum factors associated with ciliogenesis are unknown. Previously, we showed that starvation induces rapid Rab11-dependent vesicular trafficking of Rabin8, a Rab8 guanine-nucleotide exchange factor (GEF), to the mother centriole, leading to Rab8 activation and cilium growth. Here, we demonstrate that through the LPA receptor 1 (LPAR1), serum lysophosphatidic acid (LPA) inhibits Rab11a-Rabin8 interaction and ciliogenesis. LPA/LPAR1 regulates ciliogenesis initiation via downstream PI3K/Akt activation, independent of effects on cell cycle. Akt stabilizes Rab11a binding to its effector, WDR44, and a WDR44-pAkt-phosphomimetic mutant blocks ciliogenesis. WDR44 depletion promotes Rabin8 preciliary trafficking and ciliogenesis-initiating events at the mother centriole. Our work suggests disruption of Akt signaling causes a switch from Rab11-WDR44 to the ciliogenic Rab11-FIP3-Rabin8 complex. Finally, we demonstrate that Akt regulates downstream ciliogenesis processes associated with Rab8-dependent cilia growth. Together, this study uncovers a mechanism whereby serum mitogen signaling regulates Rabin8 preciliary trafficking and ciliogenesis initiation.


Asunto(s)
Cilios/fisiología , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Humanos , Quinasa I-kappa B/genética , Fosfatidilinositol 3-Quinasas/genética , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Pez Cebra , Proteínas de Unión al GTP rab/genética
5.
Proc Natl Acad Sci U S A ; 116(9): 3536-3545, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808747

RESUMEN

Collective cell migration is required for normal embryonic development and contributes to various biological processes, including wound healing and cancer cell invasion. The M-Ras GTPase and its effector, the Shoc2 scaffold, are proteins mutated in the developmental RASopathy Noonan syndrome, and, here, we report that activated M-Ras recruits Shoc2 to cell surface junctions where M-Ras/Shoc2 signaling contributes to the dynamic regulation of cell-cell junction turnover required for collective cell migration. MCF10A cells expressing the dominant-inhibitory M-RasS27N variant or those lacking Shoc2 exhibited reduced junction turnover and were unable to migrate effectively as a group. Through further depletion/reconstitution studies, we found that M-Ras/Shoc2 signaling contributes to junction turnover by modulating the E-cadherin/p120-catenin interaction and, in turn, the junctional expression of E-cadherin. The regulatory effect of the M-Ras/Shoc2 complex was mediated at least in part through the phosphoregulation of p120-catenin and required downstream ERK cascade activation. Strikingly, cells rescued with the Noonan-associated, myristoylated-Shoc2 mutant (Myr-Shoc2) displayed a gain-of-function (GOF) phenotype, with the cells exhibiting increased junction turnover and reduced E-cadherin/p120-catenin binding and migrating as a faster but less cohesive group. Consistent with these results, Noonan-associated C-Raf mutants that bypass the need for M-Ras/Shoc2 signaling exhibited a similar GOF phenotype when expressed in Shoc2-depleted MCF10A cells. Finally, expression of the Noonan-associated Myr-Shoc2 or C-Raf mutants, but not their WT counterparts, induced gastrulation defects indicative of aberrant cell migration in zebrafish embryos, further demonstrating the function of the M-Ras/Shoc2/ERK cascade signaling axis in the dynamic control of coordinated cell movement.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Desarrollo Embrionario/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión al GTP Monoméricas/genética , Animales , Cadherinas/genética , Mutación con Ganancia de Función/genética , Gastrulación/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Síndrome de Noonan/genética , Síndrome de Noonan/fisiopatología , Unión Proteica , Pez Cebra/genética
6.
Front Chem ; 6: 434, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30324102

RESUMEN

In the present study, a series of novel madecassic acid derivatives was synthesized and screened against the National Cancer Institute's 60 human cancer cell line panel. Among them, compounds 5, 12, and 17 displayed potent and highly differential antiproliferative activity against 80% of the tumor cells harboring the B-RafV600E mutation within the nanomolar range. Structure-activity analysis revealed that a 5-membered A ring containing an α,ß-unsaturated aldehyde substituted at C-23 with a 2-furoyl group seems to be crucial to produce this particular growth inhibition signature. In silico analysis of the cytotoxicity pattern of these compounds identified two highly correlated clinically approved drugs with known B-RafV600E inhibitory activity. Follow-up analysis revealed inhibition of the ERK signaling pathway through the reduction of cellular Raf protein levels is a key mechanism of action of these compounds. In particular, 17 was the most potent compound in suppressing tumor growth of B-RafV600E-mutant cell lines and displayed the highest reduction of Raf protein levels among the tested compounds. Taken together, this study revealed that modifications of madecassic acid structure can provide molecules with potent anticancer activity against cell lines harboring the clinically relevant B-RafV600E mutation, with compound 17 identified as a promising lead for the development of new anticancer drugs.

7.
J Nat Prod ; 81(7): 1666-1672, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29979591

RESUMEN

Six new macrophilone-type pyrroloiminoquines were isolated and identified from an extract of the marine hydroid Macrorhynchia philippina. The proton-deficient and heteroatom-rich structures of macrophilones B-G (2-7) were elucidated by spectroscopic analysis and comparison of their data with those of the previously reported metabolite macrophilone A (1). Compounds 1-7 are the first pyrroloiminoquines to be reported from a hydroid. The macrophilones were shown to inhibit the enzymatic conjugation of SUMO to peptide substrates, and macrophilones A (1) and C (3) exhibit potent and selective cytotoxic properties in the NCI-60 anticancer screen. Bioinformatic analysis revealed a close association of the cytotoxicity profiles of 1 and 3 with two known B-Raf kinase inhibitory drugs. While compounds 1 and 3 showed no kinase inhibitory activity, they resulted in a dramatic decrease in cellular protein levels of selected components of the ERK signal cascade. As such, the chemical scaffold of the macrophilones could provide small-molecule therapeutic leads that target the ERK signal transduction pathway.


Asunto(s)
Hidrozoos/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Pirroliminoquinonas/aislamiento & purificación , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Pirroliminoquinonas/farmacología , Sumoilación/efectos de los fármacos
8.
Genetics ; 207(4): 1335-1345, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29021281

RESUMEN

BRCA2 loss-of-heterozygosity (LOH) is frequently observed in BRCA2-mutated tumors, but its biallelic loss causes embryonic lethality in mice and inhibits proliferation of normal somatic cells. Therefore, it remains unclear how loss of BRCA2 contributes to tumorigenesis. One possibility is that mutation in potential genetic interactors of BRCA2, such as TRP53, is required for cell survival/proliferation in the absence of BRCA2. In this study, using an insertional mutagenesis screen in mouse embryonic stem cells (mESC), we have identified GIPC3 (GAIP-interacting protein C-terminus 3) as a BRCA2 genetic interactor that contributes to survival of Brca2-null mESC. GIPC3 does not compensate for BRCA2 loss in the repair of double-strand breaks. Mass-spectrometric analysis resulted in the identification of G-protein signaling transducers, APPL1 and APPL2, as potential GIPC3-binding proteins. A mutant GIPC3 (His155Ala) that does not bind to APPL1/2 failed to rescue the lethality of Brca2-null mESC, suggesting that the cell viability by GIPC3 is mediated via APPL1/2. Finally, the physiological significance of GIPC3 as a genetic interactor of BRCA2 is supported by the observation that Brca2-null embryos with Gipc3 overexpression are developmentally more advanced than their control littermates. Taken together, we have uncovered a novel role for GIPC3 as a BRCA2 genetic interactor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Carcinogénesis/genética , Animales , Proteína BRCA2/deficiencia , Neoplasias de la Mama/patología , Proteínas Portadoras/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pérdida de Heterocigocidad/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutagénesis Insercional , Mutación
9.
Mol Cell ; 64(5): 875-887, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889448

RESUMEN

Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.


Asunto(s)
Glicina/análogos & derivados , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Paclitaxel , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sulfonas , Activación Enzimática/efectos de los fármacos , Glicina/farmacocinética , Glicina/farmacología , Células HeLa , Humanos , Estrés Oxidativo , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Fosforilación , Sulfonas/farmacocinética , Sulfonas/farmacología , Proteínas ras/metabolismo
10.
J Biol Chem ; 291(34): 17804-15, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27226552

RESUMEN

The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Quinasas MAP Reguladas por Señal Extracelular , Sistema de Señalización de MAP Quinasas , Melanoma , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Melanoma/patología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
11.
Curr Biol ; 24(7): 786-92, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24656827

RESUMEN

Protein scaffolds play an important role in signal transduction, functioning to facilitate protein interactions and localize key pathway components to specific signaling sites. Connector enhancer of KSR-2 (CNK2) is a neuronally expressed scaffold recently implicated in nonsyndromic, X-linked intellectual disability (NS-XLID) [1-3]. NS-XLID patients have deficits in cognitive function and their neurons often exhibit dendritic spine abnormalities [4], suggesting a role for CNK2 in synaptic signaling and/or spine formation. To gain insight regarding how CNK2 might contribute to these processes, we used mass spectrometry to identify proteins that interact with the endogenous CNK2 scaffold. Here, we report that the major binding partner of CNK2 is Vilse/ARHGAP39 and that CNK2 complexes are enriched for proteins involved in Rac/Cdc42 signaling, including Rac1 itself, α-PIX and ß-PIX, GIT1 and GIT2, PAK3 and PAK4, and members of the cytohesin family. Binding between CNK2 and Vilse was found to be constitutive, mediated by the WW domains of Vilse and a proline motif in CNK2. Through mutant analysis, protein depletion and rescue experiments, we identify CNK2 as a spatial modulator of Rac cycling during spine morphogenesis and find that the interaction with Vilse is critical for maintaining RacGDP/GTP levels at a balance required for spine formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Espinas Dendríticas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Espinas Dendríticas/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Morfogénesis , Transducción de Señal
12.
Small GTPases ; 4(3): 180-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23985533

RESUMEN

The Raf family of protein kinases are key signaling intermediates, acting as a central link between the membrane-bound Ras GTPases and the downstream kinases MEK and ERK. Raf kinase regulation is well-known for its complexity but only recently has it been realized that many of the mechanisms involved in Raf regulation also modulate Raf dimerization, now acknowledged to be a required step for Raf signaling in multiple cellular contexts. Recent studies have shown that Raf dimerization is necessary for normal Ras-dependent Raf kinase activation and contributes to the pathogenic function of disease-associated mutant Raf proteins with all but high intrinsic kinase activity. Raf dimerization has also been found to alter therapeutic responses and disease progression in patients treated with ATP-competitive Raf inhibitors as well as certain other kinase-targeted drugs. This demonstration of clinical significance has stimulated the recent development of biosensor assays that can monitor inhibitor-induced Raf dimerization as well as studies demonstrating the therapeutic potential of blocking Raf dimerization.


Asunto(s)
Transducción de Señal , Quinasas raf/metabolismo , Dimerización , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Quinasas raf/antagonistas & inhibidores , Quinasas raf/genética , Proteínas ras/metabolismo
13.
Mol Cell ; 49(4): 751-8, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23352452

RESUMEN

Raf kinases are essential for normal Ras-Raf-MEK-ERK pathway signaling, and activating mutations in components of this pathway are associated with a variety of human cancers, as well as the related developmental disorders Noonan, LEOPARD, and cardiofaciocutaneous syndromes. Although the Raf kinases are known to dimerize during normal and disease-associated Raf signaling, the functional significance of Raf dimerization has not been fully elucidated. Here, using mutational analysis and a peptide inhibitor, we show that dimerization is required for normal Ras-dependent Raf activation and for the biological function of disease-associated Raf mutants with moderate, low, or impaired kinase activity. However, dimerization is not needed for the function of B-Raf mutants with high catalytic activity, such as V600E-B-Raf. Importantly, we find that a dimer interface peptide can effectively block Raf dimerization and inhibit Raf signaling when dimerization is required for Raf function, thus identifying the Raf dimer interface as a therapeutic target.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Quinasas raf/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Activación Enzimática , Factor de Crecimiento Epidérmico/fisiología , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Neoplasias/enzimología , Fragmentos de Péptidos/farmacología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Quinasas raf/antagonistas & inhibidores , Quinasas raf/química , Quinasas raf/genética , Proteínas ras/metabolismo
14.
Curr Biol ; 21(7): 563-8, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21458265

RESUMEN

RAF kinase inhibitors can induce ERK cascade signaling by promoting dimerization of RAF family members in the presence of oncogenic or normally activated RAS. This interaction is mediated by a dimer interface region in the RAF kinase domain that is conserved in members of the ERK cascade scaffold family, kinase suppressor of RAS (KSR). In this study, we find that most RAF inhibitors also induce the binding of KSR1 to wild-type and oncogenic B-RAF proteins, including V600E B-RAF, but promote little complex formation between KSR1 and C-RAF. The inhibitor-induced KSR1/B-RAF interaction requires direct binding of the drug to B-RAF and is dependent on conserved dimer interface residues in each protein, but, unexpectedly, is not dependent on binding of B-RAF to activated RAS. Inhibitor-induced KSR/B-RAF complex formation can occur in the cytosol and is observed in normal mouse fibroblasts, as well as a variety of human cancer cell lines. Strikingly, we find that KSR1 competes with C-RAF for inhibitor-induced binding to B-RAF and, as a result, alters the effect of the inhibitors on ERK cascade signaling.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Quinasas raf/antagonistas & inhibidores , Animales , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Dimerización , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Melanoma , Ratones , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Piridinas/metabolismo , Piridinas/farmacología , Quinasas raf/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(37): 16131-6, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20805509

RESUMEN

Maintenance of genomic integrity is an essential cellular function. We previously reported that the transcription factor and tumor suppressor CCAAT/enhancer binding protein δ (C/EBPδ, CEBPD; also known as "NFIL-6ß") promotes genomic stability. However, the molecular mechanism was not known. Here, we show that C/EBPδ is a DNA damage-induced gene, which supports survival of mouse bone marrow cells, mouse embryo fibroblasts (MEF), human fibroblasts, and breast tumor cells in response to the DNA cross-linking agent mitomycin C (MMC). Using gene knockout, protein depletion, and overexpression studies, we found that C/EBPδ promotes monoubiquitination of the Fanconi anemia complementation group D2 protein (FANCD2), which is necessary for its function in replication-associated DNA repair. C/EBPδ interacts with FANCD2 and importin 4 (IPO4, also known as "Imp4" and "RanBP4") via separate domains, mediating FANCD2-IPO4 association and augmenting nuclear import of FANCD2, a prerequisite for its monoubiquitination. This study identifies a transcription-independent activity of C/EBPδ in the DNA damage response that may in part underlie its tumor suppressor function. Furthermore, we report a function of IPO4 and nuclear import in the Fanconi anemia pathway of DNA repair.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT/metabolismo , Daño del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Carioferinas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteína delta de Unión al Potenciador CCAAT/deficiencia , Proteína delta de Unión al Potenciador CCAAT/genética , Línea Celular , Supervivencia Celular , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Ubiquitinación
16.
Mol Cell Biol ; 30(3): 806-19, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933846

RESUMEN

The B-Raf kinase is a Ras pathway effector activated by mutation in numerous human cancers and certain developmental disorders. Here we report that normal and oncogenic B-Raf proteins are subject to a regulatory cycle of extracellular signal-regulated kinase (ERK)-dependent feedback phosphorylation, followed by PP2A- and Pin1-dependent dephosphorylation/recycling. We identify four S/TP sites of B-Raf phosphorylated by activated ERK and find that feedback phosphorylation of B-Raf inhibits binding to activated Ras and disrupts heterodimerization with C-Raf, which is dependent on the B-Raf pS729/14-3-3 binding site. Moreover, we find that events influencing Raf heterodimerization can alter the transforming potential of oncogenic B-Raf proteins possessing intermediate or impaired kinase activity but have no significant effect on proteins with high kinase activity, such as V600E B-Raf. Mutation of the feedback sites or overexpression of the Pin1 prolyl-isomerase, which facilitates B-Raf dephosphorylation/recycling, resulted in increased transformation, whereas mutation of the S729/14-3-3 binding site or expression of dominant negative Pin1 reduced transformation. Mutation of each feedback site caused increased transformation and correlated with enhanced heterodimerization and activation of C-Raf. Finally, we find that B-Raf and C-Raf proteins containing mutations identified in certain developmental disorders constitutively heterodimerize and that their signaling activity can also be modulated by feedback phosphorylation.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Butadienos/farmacología , Inhibidores Enzimáticos/farmacología , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Mutación , Células 3T3 NIH , Peptidilprolil Isomerasa de Interacción con NIMA , Nitrilos/farmacología , Isomerasa de Peptidilprolil/genética , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/farmacología , Multimerización de Proteína , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/genética , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 106(27): 11022-7, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19541618

RESUMEN

Scaffold proteins contribute to the spatiotemporal control of MAPK signaling and KSR1 is an ERK cascade scaffold that localizes to the plasma membrane in response to growth factor treatment. To better understand the molecular mechanisms of KSR1 function, we examined the interaction of KSR1 with each of the ERK cascade components, Raf, MEK, and ERK. Here, we identify a hydrophobic motif within the proline-rich sequence (PRS) of MEK1 and MEK2 that is required for constitutive binding to KSR1 and find that MEK binding and residues in the KSR1 CA1 region enable KSR1 to form a ternary complex with B-Raf and MEK following growth factor treatment that enhances MEK activation. We also find that docking of active ERK to the KSR1 scaffold allows ERK to phosphorylate KSR1 and B-Raf on feedback S/TP sites. Strikingly, feedback phosphorylation of KSR1 and B-Raf promote their dissociation and result in the release of KSR1 from the plasma membrane. Together, these findings provide unique insight into the signaling dynamics of the KSR1 scaffold and reveal that through regulated interactions with Raf and ERK, KSR1 acts to both potentiate and attenuate ERK cascade activation, thus regulating the intensity and duration of ERK cascade signaling emanating from the plasma membrane during growth factor signaling.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Dominios Proteicos Ricos en Prolina , Unión Proteica , Proteínas Proto-Oncogénicas B-raf/metabolismo
18.
Mol Cell ; 34(6): 652-62, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19560418

RESUMEN

Protein scaffolds have emerged as important regulators of MAPK cascades, facilitating kinase activation and providing crucial spatio/temporal control to their signaling outputs. Using a proteomics approach to compare the binding partners of the two mammalian KSR scaffolds, we find that both KSR1 and KSR2 interact with the kinase components of the ERK cascade and have a common function in promoting RTK-mediated ERK signaling. Strikingly, we find that the protein phosphatase calcineurin selectively interacts with KSR2 and that KSR2 uniquely contributes to Ca2+-mediated ERK signaling. Calcineurin dephosphorylates KSR2 on specific sites in response to Ca2+ signals, thus regulating KSR2 localization and activity. Moreover, we find that depletion of endogenous KSR2 impairs Ca2+-mediated ERK activation and ERK-dependent signaling responses in INS1 pancreatic beta-cells and NG108 neuroblastoma cells. These findings identify KSR2 as a Ca2+-regulated ERK scaffold and reveal a new mechanism whereby Ca2+ impacts Ras to ERK pathway signaling.


Asunto(s)
Calcineurina/metabolismo , Señalización del Calcio , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Células COS , Chlorocebus aethiops , Humanos , Ratones , Proteínas Quinasas/análisis , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Ratas
19.
Curr Biol ; 17(2): 179-84, 2007 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-17174095

RESUMEN

Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, and ERK and provides spatial and temporal regulation of Ras-dependent ERK cascade signaling. In this report, we identify the heterotetrameric protein kinase, casein kinase 2 (CK2), as a new KSR1-binding partner. Moreover, we find that the KSR1/CK2 interaction is required for KSR1 to maximally facilitate ERK cascade signaling and contributes to the regulation of Raf kinase activity. Binding of the CK2 holoenzyme is constitutive and requires the basic surface region of the KSR1 atypical C1 domain. Loss of CK2 binding does not alter the membrane translocation of KSR1 or its interaction with ERK cascade components; however, disruption of the KSR1/CK2 interaction or inhibition of CK2 activity significantly reduces the growth-factor-induced phosphorylation of C-Raf and B-Raf on the activating serine site in the negative-charge regulatory region (N-region). This decrease in Raf N-region phosphorylation further correlates with impaired Raf, MEK, and ERK activation. These findings identify CK2 as a novel component of the KSR1 scaffolding complex that facilitates ERK cascade signaling by functioning as a Raf family N-Region kinase.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas/metabolismo , Quinasas raf/metabolismo , Animales , Sitios de Unión , Ratones , Células 3T3 NIH , Estructura Terciaria de Proteína , Xenopus
20.
Methods Enzymol ; 407: 224-37, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16757327

RESUMEN

Kinase suppressor of Ras (KSR) is a conserved component of the Ras pathway that functions as a molecular scaffold to enhance signaling between the core kinase components of the ERK cascade--Raf, MEK, and ERK. KSR interacts constitutively with MEK and translocates from the cytosol to the plasma membrane on Ras activation. At the membrane, KSR coordinates the assembly of a multiprotein complex containing Raf, MEK, and ERK and facilitates signal transmission from Raf to MEK and ERK. In this chapter, we will describe methods for assessing KSR function in response to Ras pathway activation. Protocols will be included that examine the ERK scaffolding activity and subcellular localization of KSR.


Asunto(s)
Proteínas Quinasas/fisiología , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Células 3T3 NIH , Oocitos/metabolismo , Transducción de Señal , Xenopus laevis , Quinasas raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...