Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(4): 103494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335670

RESUMEN

The increasing demand for cage-free (CF) poultry farming raises concern regarding air pollutant emissions in these housing systems. Previous studies have indicated that air pollutants such as particulate matter (PM) and ammonia (NH3) pose substantial risks to the health of birds and workers. This study aimed to evaluate the efficacy of electrostatic particle ionization (EPI) technology with different lengths of ion precipitators in reducing air pollutants and investigate the relationship between PM reduction and electricity consumption. Four identical CF rooms were utilized, each accommodating 175 hens of 77 wk of age (WOA). A Latin Square Design method was employed, with 4 treatment lengths: T1 = control (0 m), T2 = 12 ft (3.7 m), T3 = 24 ft (7.3 m), and T4 = 36 ft (11.0 m), where room and WOA are considered as blocking factors. Daily PM concentrations, temperature, and humidity measurements were conducted over 24 h, while NH3 levels, litter moisture content (LMC), and ventilation were measured twice a week in each treatment room. Statistical analysis involved ANOVA, and mean comparisons were performed using the Tukey HSD method with a significance level of P ≤ 0.05. This study found that the EPI system with longer wires reduced PM2.5 concentrations (P ≤ 0.01). Treatment T2, T3, and T4 led to reductions in PM2.5 by 12.1%, 19.3%, and 31.7%, respectively, and in small particle concentrations (particle size >0.5 µm) by 18.0%, 21.1%, and 32.4%, respectively. However, no significant differences were observed for PM10 and large particles (particle size >2.5 µm) (P < 0.10), though the data suggests potential reductions in PM10 (32.7%) and large particles (33.3%) by the T4 treatment. Similarly, there was no significant impact of treatment on NH3 reduction (P = 0.712), possibly due to low NH3 concentration (<2 ppm) and low LMC (<13%) among treatment rooms. Electricity consumption was significantly related to the length of the EPI system (P ≤ 0.01), with longer lengths leading to higher consumption rates. Overall, a longer-length EPI corona pipe is recommended for better air pollutant reduction in CF housing. Further research should focus on enhancing EPI technology, assessing cost-effectiveness, and exploring combinations with other PM reduction strategies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Animales , Femenino , Contaminantes Atmosféricos/análisis , Pollos , Electricidad Estática , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Tamaño de la Partícula , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis
2.
Appl Environ Microbiol ; 88(9): e0251721, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35416680

RESUMEN

Fostering a "balanced" gut microbiome through the administration of beneficial microbes that can competitively exclude pathogens has gained a lot of attention and use in human and animal medicine. However, little is known about how microbes affect the horizontal gene transfer of antimicrobial resistance (AMR). To shed more light on this question, we challenged neonatal broiler chicks raised on reused broiler chicken litter-a complex environment made up of decomposing pine shavings, feces, uric acid, feathers, and feed-with Salmonella enterica serovar Heidelberg (S. Heidelberg), a model pathogen. Neonatal chicks challenged with S. Heidelberg and raised on reused litter were more resistant to S. Heidelberg cecal colonization than chicks grown on fresh litter. Furthermore, chicks grown on reused litter were at a lower risk of colonization with S. Heidelberg strains that encoded AMR on IncI1 plasmids. We used 16S rRNA gene sequencing and shotgun metagenomics to show that the major difference between chicks grown on fresh litter and those grown on reused litter was the microbiome harbored in the litter and ceca. The microbiome of reused litter samples was more uniform and enriched in functional pathways related to the biosynthesis of organic and antimicrobial molecules than that in fresh litter samples. We found that Escherichia coli was the main reservoir of plasmids encoding AMR and that the IncI1 plasmid was maintained at a significantly lower copy per cell in reused litter compared to fresh litter. These findings support the notion that commensal bacteria play an integral role in the horizontal transfer of plasmids encoding AMR to pathogens like Salmonella. IMPORTANCE Antimicrobial resistance spread is a worldwide health challenge, stemming in large part from the ability of microorganisms to share their genetic material through horizontal gene transfer. To address this issue, many countries and international organizations have adopted a One Health approach to curtail the proliferation of antimicrobial-resistant bacteria. This includes the removal and reduction of antibiotics used in food animal production and the development of alternatives to antibiotics. However, there is still a significant knowledge gap in our understanding of how resistance spreads in the absence of antibiotic selection and the role commensal bacteria play in reducing antibiotic resistance transfer. In this study, we show that commensal bacteria play a key role in reducing the horizontal gene transfer of antibiotic resistance to Salmonella, provide the identity of the bacterial species that potentially perform this function in broiler chickens, and also postulate the mechanism involved.


Asunto(s)
Pollos , Salmonella enterica , Animales , Antibacterianos/farmacología , Pollos/microbiología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Transferencia de Gen Horizontal , ARN Ribosómico 16S , Salmonella/genética , Salmonella enterica/genética
3.
Transbound Emerg Dis ; 69(5): e2111-e2121, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35365975

RESUMEN

Viral respiratory diseases, such as avian influenza, Newcastle disease, infectious bronchitis and infectious laryngotracheitis, have considerable negative economic implications for poultry. Ensuring the virus-free status of premises by environmental sampling after cleaning and disinfection is essential for lifting a quarantine and/or safely restocking the premises following an outbreak. The objectives of this study were to identify optimal sample collection devices and to determine the locations in poultry housing which are best for poultry respiratory virus sample collection. Chickens exposed to infectious bronchitis virus, which was used as a representative virus for enveloped poultry respiratory viruses, were housed in floor-pens in either a curtain-sided wood framed house or a cement block house. Foam swabs, cellulose sponges, polyester swabs, dry cotton gauze and pre-moistened cotton gauze were evaluated for comparative efficiency in recovering viral RNA. Cotton gauze pre-moistened with the viral transport media had the highest sensitivity among the devices (wood-framed house: 78% positive, geometric mean titre [GMT] of 2.6 log10 50% egg infectious doses [EID50 ] equivalents/ml; cement block houses: 55% positive, GMT of 1.7 log10 EID50 equivalents/ml). Targeting virus deposition sites is also crucial for efficient virus elimination procedures and subsequent testing; therefore, 10 locations within the houses were compared for virus detection. In both housing types, the highest viral RNA loads were recovered from the tops of drinker lines within the pen. Places the chickens could contact directly (e.g., feeder rim) or were contacted by caretaker feet (hallway floor) also yielded higher levels of viral RNA more consistently. These results will facilitate the establishment of efficient environmental sampling procedures for respiratory viruses of poultry.


Asunto(s)
Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Celulosa , Pollos , Vivienda , Virus de la Enfermedad de Newcastle/genética , Aves de Corral , ARN Viral
5.
mSystems ; 6(4): e0072921, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34427525

RESUMEN

The overuse and misuse of antibiotics in clinical settings and in food production have been linked to the increased prevalence and spread of antimicrobial resistance (AR). Consequently, public health and consumer concerns have resulted in a remarkable reduction in antibiotics used for food animal production. However, there are no data on the effectiveness of antibiotic removal in reducing AR shared through horizontal gene transfer (HGT). In this study, we used neonatal broiler chicks and Salmonella enterica serovar Heidelberg, a model food pathogen, to test if chicks raised antibiotic free harbor transferable AR. We challenged chicks with an antibiotic-susceptible S. Heidelberg strain using various routes of inoculation and determined if S. Heidelberg isolates recovered carried plasmids conferring AR. We used antimicrobial susceptibility testing and whole-genome sequencing (WGS) to show that chicks grown without antibiotics harbored an antimicrobial resistant S. Heidelberg population at 14 days after challenge and chicks challenged orally acquired AR at a higher rate than chicks inoculated via the cloaca. Using 16S rRNA gene sequencing, we found that S. Heidelberg infection perturbed the microbiota of broiler chicks, and we used metagenomics and WGS to confirm that a commensal Escherichia coli population was the main reservoir of an IncI1 plasmid acquired by S. Heidelberg. The carriage of this IncI1 plasmid posed no fitness cost to S. Heidelberg but increased its fitness when exposed to acidic pH in vitro. These results suggest that HGT of plasmids carrying AR shaped the evolution of S. Heidelberg and that antibiotic use reduction alone is insufficient to limit antibiotic resistance transfer from commensal bacteria to Salmonella enterica. IMPORTANCE The reported increase in antibiotic-resistant bacteria in humans has resulted in a major shift away from antibiotic use in food animal production. This shift has been driven by the assumption that removing antibiotics will select for antibiotic susceptible bacterial taxa, which in turn will allow the currently available antibiotic arsenal to be more effective. This change in practice has highlighted new questions that need to be answered to assess the effectiveness of antibiotic removal in reducing the spread of antibiotic resistance bacteria. This research demonstrates that antibiotic-susceptible Salmonella enterica serovar Heidelberg strains can acquire multidrug resistance from commensal bacteria present in the gut of neonatal broiler chicks, even in the absence of antibiotic selection. We demonstrate that exposure to acidic pH drove the horizontal transfer of antimicrobial resistance plasmids and suggest that simply removing antibiotics from food animal production might not be sufficient to limit the spread of antimicrobial resistance.

6.
J Environ Qual ; 50(3): 558-566, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33835510

RESUMEN

Ammonia (NH3 ) has been used as a target gas for nuisance complaints to restrict or close poultry operations near encroaching rural development. There are conflicting data on NH3 emissions from broiler production across the United States. The purpose of this research is to compare emission rates from a Georgia broiler operation across seasons and with other geographical areas in the United States. Comparison of seasonal and geographical emission rates showed large seasonal variation in NH3 emissions for eastern U.S. sites but little seasonal variation in the semi-arid region of the United States. Differences in production management practices, ambient temperature, and animal density did not appear to explain differences in emissions between regions; however, the climatic influence of ambient humidity and litter management practices are thought to be key factors in the generation of emissions.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Amoníaco/análisis , Animales , Pollos , Humedad , Aves de Corral , Estaciones del Año
7.
J Environ Qual ; 49(4): 869-881, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33016484

RESUMEN

The success of poultry litter reuse in U.S. poultry production can be attributed to the efficient treatment methods used by producers during downtimes (the time lapse between consecutive flocks, during which the broiler house is empty). During this period, reused litter may be decaked, tilled/windrowed, or treated with acid-based amendments to reduce ammonia and bacteria levels. Competitive exclusion, pH, and temperature are proposed factors that influence the level of pathogens and the overall litter microbiome during downtimes. We previously reported on the bacterial genetic factors associated with the fitness of two strains of Salmonella enterica serovar Heidelberg (SH) incubated for 14 d in reused litter. Here, we investigated the physicochemical parameters and the microbiome of the litter correlating with SH abundance during this period. We used 16S ribosomal RNA gene sequencing to determine the litter microbiome and whole genome sequencing to characterize bacteria with competitive exclusion potential against SH. The ß diversity of the litter microbiome was significantly affected by the duration of incubation, microcosm, and microcosm plus Heidelberg strain combinations. In addition, ß diversity was significantly affected by litter parameters, including NH4 , pH, moisture, water activity, and aluminum. The major phyla observed in the reused litter throughout the 14-d incubation experiment were Firmicutes and Actinobacteria, although their abundance differed by microcosm and time. Amplicon-specific variants homologous to the members of the genera Nocardiopsis and Lentibacillus and the family Bacillaceae_2 were found to significantly correlate with the abundance of Salmonella. A consortium of Bacillus subtilis strains isolated from the litter microcosms reduced the growth of SH in vitro.


Asunto(s)
Microbiota , Salmonella enterica , Animales , Pollos , Vivienda para Animales , Aves de Corral , Salmonella
8.
Poult Sci ; 97(7): 2525-2533, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669131

RESUMEN

A study was conducted to evaluate the efficacy of fructooligosaccharides (FOS) in controlling the infection of Salmonella Enteritidis (SE) in White Leghorns. A total of 30 laying hens (white leghorns W-36) were challenged both orally and cloacally with approximately 108 colony-forming units of nalidxic acid resistant SE (SENAR) and divided into 3 treatments: 1) SENAR challenged + 0.0% FOS, 2) SENAR challenged + 0.5% FOS (Nutraflora), and 3) SENAR challenged + 1.0% FOS. SENAR recovery via fecal shedding was measured at 3- and 6-d post-infection (dpi), whereas in the ceca and internal organs, SENAR recovery was measured at 7-d post-infection. In the first experiment, there was a 1.0 log10 and a 1.3 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. In the second experiment, there was a 0.6 log10 and a 0.8 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. Fecal shedding was significantly lower in 1.0% FOS supplemented groups compared to SENAR challenge 0.0% FOS. There was no significant difference among the 3 treatments on SENAR recovery in liver with gall bladder and ovaries. However, the frequency of positive SENAR in the ovaries (10 to 40%) in SENAR challenge 0.0% FOS was significantly lower than liver with gall bladder (60 to 80%) in both experiments. There was a significant upregulation of toll-like receptor-4 in 1.0% FOS and interferon gamma in both 0.5 and 1.0% FOS. Histologic measurements of ileal villi height and crypt depth were similar across all treatments. Immunohistochemistry analyses of ileal samples showed that immunoglobulin A positive cells increased as FOS concentration increased reaching significance at 1.0% as well as altered cytokine gene expression in the ileum. Further, FOS supplementation also reduced cecal SENAR and feces SENAR levels. Collectively, the results suggest that dietary supplementation with FOS may impair SE pathogenesis while modulating humoral immunity within the gut-associated lymphoid tissue.


Asunto(s)
Antibacterianos/farmacología , Pollos , Oligosacáridos/metabolismo , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/prevención & control , Salmonella enteritidis/efectos de los fármacos , Alimentación Animal/análisis , Animales , Antibacterianos/administración & dosificación , Derrame de Bacterias , Pollos/anatomía & histología , Pollos/fisiología , Dieta/veterinaria , Carbohidratos de la Dieta/administración & dosificación , Carbohidratos de la Dieta/metabolismo , Suplementos Dietéticos/análisis , Heces/microbiología , Femenino , Vesícula Biliar/efectos de los fármacos , Vesícula Biliar/microbiología , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/microbiología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Oligosacáridos/administración & dosificación , Ovario/efectos de los fármacos , Ovario/microbiología , Distribución Aleatoria , Salmonella enteritidis/fisiología
9.
J Environ Sci Health B ; 51(2): 126-131, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26620925

RESUMEN

A study was conducted to evaluate the effects of dietary nitrocompounds on bird performance, ammonia volatilization, and changes in manure nitrogen (N). A total of 200 one-day-old male chicks (Cobb 500) were used for this study. The chicks were raised in electrically heated battery brooders for 18 days. On day 1, birds were allocated into five treatment groups with four replicated pens: (T1) control, a corn and soybean meal diet (3,100 kcal kg-1 metabolizable energy (ME) and 21% Crude Protein (CP)); (T2) 16.7 mg kg-1 nitroethanol (NEL); (T3) 33.3 mg kg-1 NEL; (T4) 16.7 mg kg-1 nitropropanol (NPL); and (T5) 33.3 mg kg-1 NPL. The body weight gain, feed intake and feed efficiency were measured on days 7, 14 and 18. Volatized ammonia (VA) and other N forms were measured at collection and following 2 weeks of incubation at 30°C. Broiler growth was not adversely affected by the nitrocompounds at concentrations up to 33.3 mg kg-1. The results show that initial manure pH was reduced by adding nitroethanol (NEL) and nitropropanol (NPL) to the diet by 0.2 and 0.5 pH units, respectively. Total VA after 2 weeks was unaffected by dietary treatment. The amounts of uric acid decomposed and ammonia produced were closely balanced in the control sample. However, this balance was significantly different among the manures produced by birds receiving nitrocompound treatments. The inclusion of NEL and NPL resulted in the presence of measurable amounts of Xanthine not found in the control group. This study indicates that supplementation of nitroethanol or nitropropanol into broiler diets up to 33.3 mg kg-1 influences uric acid degradation and ammonia production in broiler manure while maintaining optimal growth performance.

10.
BMC Vet Res ; 10: 282, 2014 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-25427406

RESUMEN

BACKGROUND: Poultry remains a major source of foodborne bacterial infections. A variety of additives with presumed anti-microbial and/or growth-promoting effects are commonly added to poultry feed during commercial grow-out, yet the effects of these additives on the gastrointestinal microbial community (the GI microbiome) as the bird matures remain largely unknown. Here we compared temporal changes in the cecal microbiome to the effects of formic acid, propionic acid, and medium-chain fatty acids (MCFA) added to feed and/or drinking water. RESULTS: Cecal bacterial communities at day of hatch (n = 5 birds), 7d (n = 32), 21d (n = 27), and 42d (n = 36) post-hatch were surveyed using direct 454 sequencing of 16S rRNA gene amplicons from each bird in combination with cultivation-based recovery of a Salmonella Typhimurium marker strain and quantitative-PCR targeting Clostridium perfringens. Treatment effects on specific pathogens were generally non-significant. S. Typhimurium introduced by oral gavage at day of hatch was recovered by cultivation from nearly all birds sampled across treatments at 7d and 21d, but by 42d, S. Typhimurium was only recovered from ca. 25% of birds, regardless of treatment. Sequencing data also revealed non-significant treatment effects on genera containing known pathogens and on the cecal microbiome as a whole. In contrast, temporal changes in the cecal microbiome were dramatic, highly significant, and consistent across treatments. At 7d, the cecal community was dominated by three genera (Flavonifractor, Pseudoflavonifractor, and a Lachnospiracea sequence type) that accounted for more than half of sequences. By 21d post-hatch, a single genus (Faecalibacterium) accounted for 23-55% of sequences, and the number of Clostridium 16S rRNA gene copies detected by quantitative-PCR reached a maximum. CONCLUSIONS: Over the 42 d experiment, the cecal bacterial community changed significantly as measured by a variety of ecological metrics and increases in the complexity of co-occurrence networks. Management of poultry to improve animal health, nutrition, or food safety may need to consider the interactive effects of any treatments with the dramatic temporal shifts in the taxonomic composition of the cecal microbiome as described here.


Asunto(s)
Ciego/microbiología , Pollos/microbiología , Ácidos Grasos/farmacología , Aditivos Alimentarios/farmacología , Formiatos/farmacología , Microbiota/efectos de los fármacos , Propionatos/farmacología , Alimentación Animal , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Masculino , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética
11.
Bioresour Technol ; 99(6): 1952-60, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17572086

RESUMEN

We studied the effect of five bedding materials (wood shavings, sawdust, peanut hulls, wheat straw and shredded paper) and PLTtrade mark (a commercial formulation of Na bisulfate) in factorial combinations, on NH(3) emissions from broiler manure. Treatments were incubated for 11 days at 25 degrees C and 98% relative humidity. Ammonia was trapped in 0.1N H(2)SO(4) and measured colorimetrically as NH(4)(+), and CO(2) was monitored with an infrared analyzer. Ammonia and CO(2) emissions were suppressed by PLT throughout the study. Wheat straw, wood shavings, and sawdust, with C(total)/N(total)>50 or C(biodegradable)/N>20, had low NH(3) emissions. Total NH(3) emissions from peanut hulls and shredded paper were the highest, probably due to peanut hulls' low C/N ratio and shredded paper's alkaline pH. No significant interactions on NH(3) emissions were detected between PLT and bedding materials.


Asunto(s)
Amoníaco/química , Biotecnología/instrumentación , Biotecnología/métodos , Colorimetría/métodos , Estiércol , Sulfatos/química , Animales , Carbono/química , Pollos , Diseño de Equipo , Vivienda para Animales , Concentración de Iones de Hidrógeno , Nitrógeno/química , Temperatura , Triticum , Madera
12.
Artículo en Inglés | MEDLINE | ID: mdl-17454362

RESUMEN

Under laboratory conditions we studied the possibility of decreasing NH(3) emissions from broiler litter by applying one of two nitrifier seeds (a material obtained from the top centimeters of the dirt floor of a chicken house, or Houston Black clay soil) at 0, 2.5, 5, and 10% w/w. Ammonia emission rates, total NH(3) trapped in 0.1N H(2)SO(4), and NO(x)(-)-N concentrations decreased at the highest application rate of either amendment, whereas CO(2) emissions increased with the amendments' application rates. We hypothesize that the lack of a significant increase in NO(x)(-)-N concentrations was due to inhibition of nitrifiers by high NH(4)(+)-N, salt and Cl(-) concentrations, and denitrification promoted by high water, availability of easily decomposable carbon sources, and limited O(2) supply.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Amoníaco/análisis , Amoníaco/química , Aves de Corral , Animales , Monitoreo del Ambiente , Estiércol/microbiología , Nitratos/metabolismo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...