Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 53(6): 661-7, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10919323

RESUMEN

Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase A (XylA) from Neocallimastix patriciarum in combination with mannanase and alpha-galactosidase. Mannanase A (ManA) from Pseudomonas fluorescens subsp. cellulosa and ManA from Clostridium thermocellum, both family 26 glycosyl hydrolases, are structurally diverse and exhibit different pH and temperature optima. Although neither mannanase was effective in pretreating softwood pulp alone, both enzymes were able to enhance the production of reducing sugar and the reduction of single-stage bleached kappa number when used with the xylanase. Sequential incubations with XylA and P. fluorescens ManA produced the largest final kappa number reduction in comparison to control pretreated pulp. The release of galactose from softwood pulp by alpha-galactosidase A (AgaA) from P. fluorescens was enhanced by the presence of ManA from the same microorganism, and a single pretreatment with these enzymes, in combination with XylA. gave the most effective kappa number reduction using a single incubation. Results indicated that mixtures of hemicellulase activities can be chosen to enhance pulp bleachability.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Industrias , Papel , Manosidasas/metabolismo , Xilano Endo-1,3-beta-Xilosidasa , Xilosidasas/metabolismo , alfa-Galactosidasa/metabolismo , beta-Manosidasa
2.
Biochem J ; 342 ( Pt 2): 473-80, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10455036

RESUMEN

Xylanase A (Pf Xyn10A), in common with several other Pseudomonas fluorescens subsp. cellulosa polysaccharidases, consists of a Type II cellulose-binding domain (CBD), a catalytic domain (Pf Xyn10A(CD)) and an internal domain that exhibits homology to Type X CBDs. The Type X CBD of Pf Xyn10A, expressed as a discrete entity (CBD(X)) or fused to the catalytic domain (Pf Xyn10A'), bound to amorphous and bacterial microcrystalline cellulose with a K(a) of 2.5 x 10(5) M(-1). CBD(X) exhibited no affinity for soluble forms of cellulose or cello-oligosaccharides, suggesting that the domain interacts with multiple cellulose chains in the insoluble forms of the polysaccharide. Pf Xyn10A' was 2-3 times more active against cellulose-hemicellulose complexes than Pf Xyn10A(CD); however, Pf Xyn10A' and Pf Xyn10A(CD) exhibited the same activity against soluble substrates. CBD(X) did not disrupt the structure of plant-cell-wall material or bacterial microcrystalline cellulose, and did not potentiate Pf Xyn10A(CD) when not covalently linked to the enzyme. There was no substantial difference in the affinity of full-length Pf Xyn10A and the enzyme's Type II CBD for cellulose. The activity of Pf Xyn10A against cellulose-hemicellulose complexes was similar to that of Pf Xyn10A', and a derivative of Pf Xyn10A in which the Type II CBD is linked to the Pf Xyn10A(CD) via a serine-rich linker sequence [Bolam, Cireula, McQueen-Mason, Simpson, Williamson, Rixon, Boraston, Hazlewood and Gilbert (1998) Biochem J. 331, 775-781]. These data indicate that CBD(X) is functional in Pf Xyn10A and that no synergy, either in ligand binding or in the potentiation of catalysis, is evident between the Type II and X CBDs of the xylanase.


Asunto(s)
Pseudomonas fluorescens/enzimología , Xilosidasas/química , Xilosidasas/metabolismo , Secuencia de Bases , Sitios de Unión , Celulosa/metabolismo , Cartilla de ADN/genética , Endo-1,4-beta Xilanasas , Escherichia coli/genética , Cinética , Espectroscopía de Resonancia Magnética , Pseudomonas fluorescens/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Xilanos/metabolismo , Xilosidasas/genética
3.
Biochem J ; 331 ( Pt 3): 775-81, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9560304

RESUMEN

To investigate the mode of action of cellulose-binding domains (CBDs), the Type II CBD from Pseudomonas fluorescens subsp. cellulosa xylanase A (XYLACBD) and cellulase E (CELECBD) were expressed as individual entities or fused to the catalytic domain of a Clostridium thermocellum endoglucanase (EGE). The two CBDs exhibited similar Ka values for bacterial microcrystalline cellulose (CELECBD, 1.62x10(6) M-1; XYLACBD, 1.83x10(6) M-1) and acid-swollen cellulose (CELECBD, 1.66x10(6) M-1; XYLACBD, 1.73x10(6) M-1). NMR spectra of XYLACBD titrated with cello-oligosaccharides showed that the environment of three tryptophan residues was affected when the CBD bound cellohexaose, cellopentaose or cellotetraose. The Ka values of the XYLACBD for C6, C5 and C4 cello-oligosaccharides were estimated to be 3.3x10(2), 1.4x10(2) and 4.0x10(1) M-1 respectively, suggesting that the CBD can accommodate at least six glucose molecules and has a much higher affinity for insoluble cellulose than soluble oligosaccharides. Fusion of either the CELECBD or XYLACBD to the catalytic domain of EGE potentiated the activity of the enzyme against insoluble forms of cellulose but not against carboxymethylcellulose. The increase in cellulase activity was not observed when the CBDs were incubated with the catalytic domain of either EGE or XYLA, with insoluble cellulose and a cellulose/hemicellulose complex respectively as the substrates. Pseudomonas CBDs did not induce the extension of isolated plant cell walls nor weaken cellulose paper strips in the same way as a class of plant cell wall proteins called expansins. The XYLACBD and CELECBD did not release small particles from the surface of cotton. The significance of these results in relation to the mode of action of Type II CBDs is discussed.


Asunto(s)
Celulasa/química , Celulosa/metabolismo , Pseudomonas fluorescens/enzimología , Xilosidasas/química , Proteínas Bacterianas/química , Sitios de Unión/genética , Celulasa/genética , Clostridium/enzimología , Endo-1,4-beta Xilanasas , Cinética , Espectroscopía de Resonancia Magnética , Oligosacáridos/metabolismo , Proteínas Recombinantes de Fusión/genética
4.
J Biotechnol ; 57(1-3): 59-69, 1997 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-9335166

RESUMEN

To evaluate the role of the CBDs and linker sequences in Pseudomonas xylanase A (XYLA) and arabinofuranosidase C (XYLC), the catalytic activity of derivatives of these enzymes, lacking either the linker sequences or CBDs, was assessed. Removal of the CBDs or linker sequences did not affect the activity of either XYLA or XYLC against soluble arabinoxylan, while derivatives of XYLA, in which either the CBD or interdomain regions had been deleted, exhibited decreased activity against the xylan component of cellulose/hemicellulose complexes. Although a truncated derivative of XYLC (XYLC"'), lacking its CBD, was less active than the full-length enzyme against plant cell wall material containing highly substituted arabinoxylan, XYLC"' was more active than XYLC on complex substrates where the degree of substitution of arabinoxylan was very low. These data indicate that CBDs and linker sequences play an important role in the activity of hemicellulases against plant cell walls and other cellulose/hemicellulose complexes.


Asunto(s)
Celulosa/metabolismo , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Sitios de Unión , Endo-1,4-beta Xilanasas , Pseudomonas/enzimología , Xilosidasas/metabolismo
5.
Appl Microbiol Biotechnol ; 48(2): 177-83, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9299774

RESUMEN

Enzyme-aided bleaching of softwood and hardwood kraft pulps by glycosyl hydrolase family-10 and -11 xylanases and a family-26 mannanase was investigated. The ability to release reducing sugar from pulp xylan and to enhance bleachability is not a characteristic shared by all xylanases. Of the six enzymes tested, two xylanases belonging to family 11 were most effective at increasing bleachability and improving final paper brightness. None of the enzymes had a deleterious effect on pulp fibre integrity. The efficiency of individual xylanases as bleach enhancers was not dependent on the source microorganism, and could not be predicted solely on the basis of the quantity or nature of products released from pulp xylan. Cooperative interactions between xylanase/xylanase and xylanase/mannanase combinations, during the pretreatment of softwood and hardwood pulps, were investigated. Synergistic effects on reducing-sugar release and kappa number reduction were elicited by a combination of two family-10 xylanases. Pretreatment of kraft pulp with mannanase A from Pseudomonas fluorescens subsp. cellulosa and any one of a number of xylanases resulted in increased release of reducing sugar and a larger reduction in kappa number than obtained with the xylanases alone, confirming the beneficial effects of family-26 mannanases on enzyme-aided bleaching of paper pulp.


Asunto(s)
Papel , Madera , Xilosidasas/farmacología , Glicósido Hidrolasas/farmacología , Manosidasas/farmacología , Xilano Endo-1,3-beta-Xilosidasa , beta-Manosidasa
6.
Appl Microbiol Biotechnol ; 46(5-6): 514-20, 1996 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9008884

RESUMEN

Xylanase A (XylA) from Pseudomonas fluorescens subsp. cellulosa consists of an N-terminal non-catalytic cellulose-binding domain joined to a functionally independent C-terminal catalytic domain by a sequence rich in serine residues. Xylanase D (XylD) from Cellulomonas fimi also exhibits a modular structure comprising an N-terminal catalytic domain linked to an internal non-catalytic xylan-binding domain and a C-terminal cellulose-binding domain. To determine the importance of the non-catalytic polysaccharide-binding domains and linker sequences of XylA and XylD in relation to their capacity to hydrolyse pulp xylan and enhance bleachability, purified full-length and modified derivatives of both enzymes were incubated with a hardwood kraft pulp. Deletion of the cellulose-binding domain or linker region from XylA decreased the activity of the enzyme against pulp xylan, but had no significant effect on the capacity of the enzyme to facilitate delignification and reduce pulp kappa number. While full-length and truncated forms of XylD, lacking either the cellulose-binding or the cellulose- and xylan-binding domains, were equally effective in hydrolysing pulp xylan, enzyme derivatives containing a polysaccharide-binding domain were marginally more efficient in reducing pulp kappa number. The reduction in kappa number elicited by full-length and isolated catalytic domains of XylA and XylD was reflected in an increase in the brightness of paper handsheets derived from pretreated pulps. Thus, the polysaccharide-binding domains of XylA and XylD did not appear to confer any advantage in terms of the ability of the enzymes to improve pulp bleachability. However, XylA and XylD, which belong to different glycosyl hydrolase families, differed in their ability to hydrolyse pulp xylan and facilitate the delignification of kraft pulp.


Asunto(s)
Actinomycetales/enzimología , Actinomycetales/genética , Celulosa/metabolismo , Mutagénesis Insercional , Pseudomonas fluorescens/enzimología , Pseudomonas fluorescens/genética , Xilosidasas/genética , Xilosidasas/fisiología , beta-Glucosidasa/genética , beta-Glucosidasa/fisiología , Clonación Molecular , Endo-1,4-beta Xilanasas , Regulación Bacteriana de la Expresión Génica , Papel , Peróxidos/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/fisiología
7.
Biochem J ; 319 ( Pt 2): 515-20, 1996 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-8912689

RESUMEN

Xylanase A (XYLA) and arabinofuranosidase C (XYLC) from Pseudomonas fluorescens subsp. cellulosa are modular enzymes consisting of discrete cellulose-binding domains (CBDs) and catalytic domains joined by serine-rich linker sequences. To evaluate the role of the CBDs and interdomain regions, the capacity of full-length and truncated derivatives of the two enzymes, lacking either the linker sequences or CBDs, to hydrolyse a range of substrates, and bind to cellulose, was determined. Removal of the CBDs did not affect either the activity of XYLA or XYLC against soluble arabinoxylan. Similarly, deletion of the linker sequences did not alter the affinity of the enzymes for cellulose or their activity against soluble substrates, even when bound to cellulose via the CBDs. Truncated derivatives of XYLA lacking either the linker sequences or the CBD were less active against xylan contained in cellulose-hemicellulose complexes, compared with the full-length xylanase. Similarly, removal of the CBD from XYLC diminished the activity of the enzyme (XYLC''') against plant-cell-wall material containing highly substituted arabinoxylan. The role of CBDs and linker sequences in the catalytic activity of hemicellulases against the plant cell wall is discussed.


Asunto(s)
Celulosa/metabolismo , Glicósido Hidrolasas/metabolismo , Pseudomonas fluorescens/enzimología , Xilosidasas/metabolismo , Sitios de Unión , Endo-1,4-beta Xilanasas , Análisis de Secuencia , Especificidad por Sustrato , Xilosidasas/genética
8.
Biochem J ; 285 ( Pt 3): 947-55, 1992 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-1497631

RESUMEN

A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA constructed in pUC18 and expressed in Escherichia coli was screened for recombinants expressing 4-methylumbelliferyl beta-D-glucoside hydrolysing activity (MUGase). A single MUGase-positive clone was isolated. The MUGase hydrolysed cellobiose, cellotriose, cellotetraose, cellopentaose and cellohexaose to glucose, by sequentially cleaving glucose residues from the non-reducing end of the cello-oligosaccharides. The Km values for cellobiose and cellohexaose hydrolysis were 1.2 mM and 28 microM respectively. The enzyme exhibited no activity against soluble or insoluble cellulose, xylan and xylobiose. Thus the MUGase is classified as a 1,4-beta-D-glucan glucohydrolase (EC 3.2.1.74) and is designated 1,4-beta-D-glucan glucohydrolase D (CELD). When expressed by E. coli, CELD was located in the cell-envelope fraction; a significant proportion of the native enzyme was also associated with the cell envelope when synthesized by its endogenous host. The nucleotide sequence of the gene, celD, which encodes CELD, revealed an open reading frame of 2607 bp, encoding a protein of M(r) 92,000. The deduced primary structure of CELD was confirmed by the M(r) of CELD (85,000) expressed by E. coli and P. fluorescens subsp. cellulosa, and by the experimentally determined N-terminus of the enzyme purified from E. coli, which showed identity with residues 52-67 of the celD translated sequence. The structure of the N-terminal region of full-length CELD was similar to the signal peptides of P. fluorescens subsp. cellulosa plant-cell-wall hydrolases. Deletion of the N-terminal 47 residues of CELD solubilized MUGase activity in E. coli. CELD exhibited sequence similarity with beta-glucosidase B of Clostridium thermocellum, particularly in the vicinity of the active-site aspartate residue, but did not display structural similarity with the mature forms of cellulases and xylanases expressed by P. fluorescens subsp. cellulosa.


Asunto(s)
Pseudomonas fluorescens/genética , beta-Glucosidasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Clonación Molecular , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Glucano 1,4-beta-Glucosidasa , Datos de Secuencia Molecular , Pseudomonas fluorescens/enzimología , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato , beta-Glucosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA