Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693246

RESUMEN

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

2.
Cells ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534353

RESUMEN

Gravity and mechanical forces cause important alterations in the human skeletal system, as demonstrated by space flights. Innovative animal models like zebrafish embryos and medaka have been introduced to study bone response in ground-based microgravity simulators. We used, for the first time, adult zebrafish in simulated microgravity, with a random positioning machine (RPM) to study bone remodeling in the scales. To evaluate the effects of microgravity on bone remodeling in adult bone tissue, we exposed adult zebrafish to microgravity for 14 days using RPM and we evaluated bone remodeling on explanted scales. Our data highlight bone resorption in scales in simulated microgravity fish but also in the fish exposed, in normal gravity, to the vibrations produced by the RPM. The osteoclast activation in both rotating and non-rotating samples suggest that prolonged vibrations exposure leads to bone resorption in the scales tissue. Stress levels in these fish were normal, as demonstrated by blood cortisol quantification. In conclusion, vibrational mechanical stress induced bone resorption in adult fish scales. Moreover, adult fish as an animal model for microgravity studies remains controversial since fish usually live in weightless conditions because of the buoyant force from water and do not constantly need to support their bodies against gravity.


Asunto(s)
Resorción Ósea , Animales , Vibración , Ingravidez , Pez Cebra
3.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341423

RESUMEN

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

4.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865644

RESUMEN

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768427

RESUMEN

Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Esfingomielinas , Metabolismo de los Lípidos
6.
Nutrients ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364863

RESUMEN

Our study aimed to show a relationship between metabolic control, vitamin D status (25OHD), and arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio in children with type 1 diabetes (T1D). The secondary aim was to evaluate dietary intake and the presence of ketoacidosis (DKA) at the onset of T1D. Methods: A cohort of 40 children with T1D was recruited, mean age 9.7 years (7.1; 13), with onset of T1D in the last 5 years: some at onset (n: 20, group A) and others after 18.0 ± 5 months (n: 20; group B). Twenty healthy children were compared as control subjects (CS). Dietary intakes were assessed through a diary food frequency questionnaire. Moreover, dried blood spots were used to test AA/EPA ratio by gas chromatography. Results: T1D children had a lower percentage of sugar intake (p < 0.02) than CS. Furthermore, group B introduced a greater amount of AA with the diet (g/day; p < 0.05) than CS (p < 0.01) and group A (p < 0.01). Children with an AA/EPA ratio ≤ 22.5 (1st quartile) required a lower insulin demand and had higher 25OHD levels than those who were in the higher quartiles (p < 0.05). Subjects with DKA (9/40) had levels of 25OHD (p < 0.05) and C-peptide (p < 0.05) lower than those without DKA. Moreover, analyzing the food questionnaire in group A, subjects with DKA showed a lower intake of proteins, sugars, fiber (g/day; p< 0.05), vitamin D, EPA, and DHA (g/day; p < 0.01) compared to subjects without DKA. Non-linear associations between vitamin D intake (p < 0.0001; r2:0.580) and linear between EPA intake and C-peptide (p < 0.05; r: 0.375) were found in all subjects. Conclusions: The study shows a relationship between vitamin D status, AA/EPA ratio, and metabolic state, probably due to their inflammatory and immune mechanisms. A different bromatological composition of the diet could impact the severity of the onset.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ácidos Grasos Omega-3 , Niño , Humanos , Ácido Eicosapentaenoico , Ácido Araquidónico/metabolismo , Vitamina D , Péptido C , Vitaminas , Ácidos Docosahexaenoicos
7.
Cell Mol Life Sci ; 79(10): 536, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181557

RESUMEN

Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.


Asunto(s)
Células Madre Mesenquimatosas , Ingravidez , Antígenos CD , Células de la Médula Ósea , Diferenciación Celular/fisiología , Humanos , Mecanotransducción Celular , Proteínas de Transporte de Catión Orgánico , Osteogénesis , Proteoma , Simulación de Ingravidez
8.
Clin Lung Cancer ; 23(7): e489-e499, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948460

RESUMEN

INTRODUCTION: Lipid metabolism impacts immune cell differentiation, activation, and functions, modulating inflammatory mediators, energy homeostasis, and cell membrane composition. Despite preclinical evidence, data in humans lack concerning tumors and immunotherapy (IO). We aimed at investigating the correlations between circulating lipids and the outcome of non-small cell lung cancer (NSCLC) patients treated with IO. MATERIALS AND METHODS: We identified all patients with advanced NSCLC treated with IO at our Institution with available baseline plasma samples. Fatty acids (FAs) were analyzed through gas chromatography. Survival curves were estimated by the Kaplan-Meier method. Cox multivariate models were constructed through a stepwise procedure, with entry and exit P value set at .2. RESULTS: We identified 112 patients, mostly with performance status 1 (65.2%) and PD-L1≥1% (75.3%). Median progression-free survival (PFS) and overall survival (OS) were 2.8 and 11.0 months, respectively. Multivariable model for survival identified a positive association of circulating free (FFA) C16:0 (P .005) and esterified (EFA) C16:1 (P .030) with PFS, and a positive association of EFA C16:1 (P .001) and EFA C18:0 (P .020) with OS. EFA C16:0 was negatively associated with PFS (P .008). CONCLUSION: FFA C16:0 and FAs derived from its unsaturation (EFA C16:1) and elongation (EFA C18:0) are associated with a better outcome in NSCLC patients treated with IO. It is conceivable that the ratio among those FAs may modify membrane fluidity and receptor activity, influencing IO efficacy. These data pave the way for the investigation of lipid-modulating strategies in association with IO in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Antígeno B7-H1 , Neoplasias Pulmonares/tratamiento farmacológico , Ácidos Grasos/uso terapéutico , Inmunoterapia/métodos , Biomarcadores , Mediadores de Inflamación/uso terapéutico
9.
Metabolism ; 136: 155291, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35981632

RESUMEN

BACKGROUND: Cholesterol is central to pancreatic ß-cell physiology and alterations of its homeostasis contribute to ß-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts ß-cells function. METHODS: Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal ß-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS: Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable ß-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated­calcium dynamics were detected in PCSK9-deficient ß-cells. Mechanistically, pancreatic PCSK9 silencing impacts ß-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS: These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the ß-cell secretory pathway, via modulation of cholesterol homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proproteína Convertasa 9 , Animales , Glucemia/metabolismo , Calcio/metabolismo , Colesterol , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , Ratones Noqueados , Páncreas/metabolismo , Proinsulina/metabolismo , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas SNARE/metabolismo , Vías Secretoras , Serina Endopeptidasas/genética , Subtilisinas/metabolismo
10.
Life (Basel) ; 12(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35743848

RESUMEN

Anhydrobiosis, a peculiar adaptive strategy existing in nature, is a reversible capability of organisms to tolerate a severe loss of their body water when their surrounding habitat is drying out. In the anhydrobiotic state, an organism lacks all dynamic features of living beings since an ongoing metabolism is absent. The depletion of water in the anhydrobiotic state increases the ionic concentration and the production of reactive oxygen species (ROS). An imbalance between the increased production of ROS and the limited action of antioxidant defences is a source of biomolecular damage and can lead to oxidative stress. The deleterious effects of oxidative stress were demonstrated in anhydrobiotic unicellular and multicellular organisms, which counteract the effects using efficient antioxidant machinery, mainly represented by ROS scavenger enzymes. To gain insights into the dynamics of antioxidant patterns during the kinetics of the anhydrobiosis of two tardigrade species, Paramacrobiotus spatialis and Acutuncus antarcticus, we investigated the activity of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase) and the amount of non-enzymatic antioxidants (glutathione) in the course of rehydration. In P. spatialis, the activity of catalase increases during dehydration and decreases during rehydration, whereas in A. antarcticus, the activity of superoxide dismutase decreases during desiccation and increases during rehydration. Genomic varieties, different habitats and geographical regions, different diets, and diverse evolutionary lineages may have led to the specialization of antioxidant strategies in the two species.

11.
Nutrients ; 14(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745231

RESUMEN

Gestational diabetes mellitus (GD) is characterized by glycemic and lipid metabolism alterations in an environment of low-grade inflammation. Our trial aimed to assess the effect of nutraceutical supplements (omega-3 fatty acids, anthocyanins, and alpha-cyclodextrins) in GD patients and evaluate the role of anthropometric, metabolic, and inflammatory parameters as biomarkers to identify subjects who require pharmacological hypoglycemic treatment during gestation. Pregnant women with GD at 24-28 weeks of gestation were enrolled in a double-blind trial and randomized to receive either nutraceutical supplements or a placebo for 12 weeks. No statistically significant differences were observed between the two groups in blood and urine measurements of metabolic, inflammatory, and antioxidant parameters. In the whole cohort, pre-pregnancy BMI and anthropometric measurements were significantly different in patients who required pharmacological intervention. These patients showed higher triglycerides, CRP, and insulin levels and gave birth to newborns with significantly higher weights. Subjects with a greater AA/EPA ratio had higher PAF levels and gave birth four days earlier. In conclusion, one-to-one nutritional coaching and poor compliance with nutraceutical supplementation might have outweighed the impact of this intervention. However, triglyceride concentration and the AA/EPA ratio seems to be a biomarker for higher inflammatory levels and GD candidates for pharmacological treatment. An adequate assumption of omega-3 in women with GD, either by a controlled diet or by nutraceutical supplementation, reduces the need for pharmacological therapy.


Asunto(s)
Diabetes Gestacional , Ácidos Grasos Omega-3 , Antocianinas/uso terapéutico , Biomarcadores , Diabetes Gestacional/tratamiento farmacológico , Suplementos Dietéticos , Método Doble Ciego , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Humanos , Recién Nacido , Embarazo , Triglicéridos
12.
Biomedicines ; 10(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35327517

RESUMEN

Airborne ultrafine particle (UFP) exposure is a great concern as they have been correlated to increased cardiovascular mortality, neurodegenerative diseases and morbidity in occupational and environmental settings. The ultrafine components of diesel exhaust particles (DEPs) represent about 25% of the emission mass; these particles have a great surface area and consequently high capacity to adsorb toxic molecules, then transported throughout the body. Previous in-vivo studies indicated that DEP exposure increases pro- and antioxidant protein levels and activates inflammatory response both in respiratory and cardiovascular systems. In cells, DEPs can cause additional reactive oxygen species (ROS) production, which attacks surrounding molecules, such as lipids. The cell membrane provides lipid mediators (LMs) that modulate cell-cell communication, inflammation, and resolution processes, suggesting the importance of understanding lipid modifications induced by DEPs. In this study, with a lipidomic approach, we evaluated in the mouse lung and cortex how DEP acute and subacute treatments impact polyunsaturated fatty acid-derived LMs. To analyze the data, we designed an ad hoc bioinformatic pipeline to evaluate the functional enrichment of lipid sets belonging to the specific biological processes (Lipid Set Enrichment Analysis-LSEA). Moreover, the data obtained correlate tissue LMs and proteins associated with inflammatory process (COX-2, MPO), oxidative stress (HO-1, iNOS, and Hsp70), involved in the activation of many xenobiotics as well as PAH metabolism (Cyp1B1), suggesting a crucial role of lipids in the process of DEP-induced tissue damage.

13.
iScience ; 25(1): 103707, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35036884

RESUMEN

Compelling evidence support an involvement of oxidative stress and intestinal inflammation as early events in the predisposition and development of obesity and its related comorbidities. Here, we show that deficiency of the major mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) in the gastrointestinal tract drives spontaneous obesity. Intestinal epithelium-specific Sod2 ablation in mice induced adiposity and inflammation via phospholipase A2 (PLA2) activation and increased release of omega-6 polyunsaturated fatty acid arachidonic acid. Remarkably, this obese phenotype was rescued when fed an essential fatty acid-deficient diet, which abrogates de novo biosynthesis of arachidonic acid. Data from clinical samples revealed that the negative correlation between intestinal Sod2 mRNA levels and obesity features appears to be conserved between mice and humans. Collectively, our findings suggest a role of intestinal Sod2 levels, PLA2 activity, and arachidonic acid in obesity presenting new potential targets of therapeutic interest in the context of this metabolic disorder.

14.
Cancer Discov ; 12(1): 90-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789537

RESUMEN

In tumor-bearing mice, cyclic fasting or fasting-mimicking diets (FMD) enhance the activity of antineoplastic treatments by modulating systemic metabolism and boosting antitumor immunity. Here we conducted a clinical trial to investigate the safety and biological effects of cyclic, five-day FMD in combination with standard antitumor therapies. In 101 patients, the FMD was safe, feasible, and resulted in a consistent decrease of blood glucose and growth factor concentration, thus recapitulating metabolic changes that mediate fasting/FMD anticancer effects in preclinical experiments. Integrated transcriptomic and deep-phenotyping analyses revealed that FMD profoundly reshapes anticancer immunity by inducing the contraction of peripheral blood immunosuppressive myeloid and regulatory T-cell compartments, paralleled by enhanced intratumor Th1/cytotoxic responses and an enrichment of IFNγ and other immune signatures associated with better clinical outcomes in patients with cancer. Our findings lay the foundations for phase II/III clinical trials aimed at investigating FMD antitumor efficacy in combination with standard antineoplastic treatments. SIGNIFICANCE: Cyclic FMD is well tolerated and causes remarkable systemic metabolic changes in patients with different tumor types and treated with concomitant antitumor therapies. In addition, the FMD reshapes systemic and intratumor immunity, finally activating several antitumor immune programs. Phase II/III clinical trials are needed to investigate FMD antitumor activity/efficacy.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Ayuno , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Neoplasias Colorrectales/dietoterapia , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento
15.
Cells ; 10(1)2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467111

RESUMEN

(1) Background: Lipid metabolism is a fundamental hallmark of all tumors, especially of breast cancer. Few studies describe the different lipid metabolisms and sensitivities to the microenvironment of breast cancer cell subtypes that influence the proliferation, aggressiveness, and success of therapy. This study describes the impact of lipid microenvironment on endoplasmic reticulum (ER) membrane and metabolic activity in two breast cancer cell lines with Luminal A and triple-negative breast cancer (TNBC) features. (2) Methods: We investigated the peculiar lipid phenotype of a TNBC cell line, MDA-MB-231, and a Luminal A cell line, MCF7, and their different sensitivity to exogenous fatty acids (i.e., palmitic acid (PA) and docosahexaenoic acid (DHA)). Moreover, we verified the impact of exogenous fatty acids on ER lipid composition. (3) Results: The data obtained demonstrate that MDA-MB-231 cells are more sensitive to the lipid microenvironment and that both PA and DHA are able to remodel their ER membranes with consequences on resident enzyme activity. On the contrary, MCF7 cells are less sensitive to PA, whereas they incorporate DHA, although less efficiently than MDA-MB-231 cells. (4) Conclusions: This study sustains the importance of lipid metabolism as an innovative hallmark to discriminate breast cancer subclasses and to develop personalized and innovative pharmacological strategies. The different sensitivities to the lipid environment shown by MCF7 and MDA-MB-231 cells might be related to cell malignancy and chemoresistance onset. In the future, this new approach could lead to a substantial decrease both in deleterious side effects for the patients and in the cost of entire therapeutic treatments coupled with increased therapy efficiency.


Asunto(s)
Neoplasias de la Mama/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Grasos , Membranas Intracelulares/metabolismo , Neoplasias de la Mama/patología , Retículo Endoplásmico/patología , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Femenino , Humanos , Membranas Intracelulares/patología , Células MCF-7
16.
Antioxidants (Basel) ; 9(3)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204441

RESUMEN

In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.

17.
Nutrients ; 12(2)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32074941

RESUMEN

BACKGROUND: In gestational diabetes mellitus (GDM), pancreatic ß-cell breakdown can result from a proinflammatory imbalance created by a sustained level of cytokines. In this study, we investigated the role of specific cytokines, such as B-cell activating factor (BAFF), tumor necrosis factor α (TNF-α), and platelet-activating factor (PAF), together with methylglyoxal (MGO) and glycated albumin (GA) in pregnant women affected by GDM. METHODS: We enrolled 30 women whose inflammation and metabolic markers were measured at recruitment and after 12 weeks of strict dietetic therapy. We compared these data to the data obtained from 53 randomly selected healthy nonpregnant subjects without diabetes, hyperglycemia, or any condition that can affect glycemic metabolism. RESULTS: In pregnant women affected by GDM, PAF levels increased from 26.3 (17.4-47.5) ng/mL to 40.1 (30.5-80.5) ng/mL (p < 0.001). Their TNF-α levels increased from 3.0 (2.8-3.5) pg/mL to 3.4 (3.1-5.8) pg/mL (p < 0.001). The levels of methylglyoxal were significantly higher in the women with GDM (p < 0.001), both at diagnosis and after 12 weeks (0.64 (0.46-0.90) µg/mL; 0.71 (0.47-0.93) µg/mL, respectively) compared to general population (0.25 (0.19-0.28) µg/mL). Levels of glycated albumin were significantly higher in women with GDM (p < 0.001) only after 12 weeks from diagnosis (1.51 (0.88-2.03) nmol/mL) compared to general population (0.95 (0.63-1.4) nmol/mL). CONCLUSION: These findings support the involvement of new inflammatory and metabolic biomarkers in the mechanisms related to GDM complications and prompt deeper exploration into the vicious cycle connecting inflammation, oxidative stress, and metabolic results.


Asunto(s)
Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Factor de Activación Plaquetaria , Piruvaldehído/sangre , Albúmina Sérica , Factor de Necrosis Tumoral alfa/sangre , Adulto , Antropometría , Biomarcadores/sangre , Constitución Corporal , Femenino , Productos Finales de Glicación Avanzada , Humanos , Recién Nacido , Inflamación , Embarazo , Albúmina Sérica Glicada
18.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936443

RESUMEN

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.


Asunto(s)
Modelos Biológicos , Plasma Rico en Plaquetas/metabolismo , Ingravidez , Cicatrización de Heridas , Animales , Recuento de Células , Movimiento Celular/genética , Colágeno/metabolismo , Elasticidad , Regulación de la Expresión Génica , Sanguijuelas/fisiología , Ratones , Células 3T3 NIH , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Nutr Neurosci ; 23(10): 779-790, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30545280

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by abnormal development of cognitive, social, and communicative skills. Although ASD aetiology and pathophysiology are still unclear, various nutritional factors have been investigated as potential risk factors for ASD development, including omega-3 polyunsaturated fatty acids (PUFAs) and vitamin D deficiency. In fact, both omega-3 PUFAs and vitamin D are important for brain development and function. Case report: Herein, we report the case of a 23-year-old young adult male with autism who was referred to our Unit due to a 12-month history of cyclic episodes of restlessness, agitation, irritability, oppositional and self-injurious behaviours. Laboratory tests documented a markedly altered omega-6/omega-3 balance, along with a vitamin D deficiency, as assessed by serum levels of 25-hydroxyvitamin D. Omega-3 and vitamin D co-supplementation was therefore started, with remarkable improvements in ASD symptoms throughout a 24-month follow-up period. A brief review of the literature for interventional studies evaluating the efficacy of omega-3 or vitamin D supplementation for the treatment of ASD-related symptoms is also provided. Conclusion: To our knowledge, this is the first case reporting remarkable beneficial effects on ASD symptoms deriving from omega-3 and vitamin D combination therapy. This case report suggests omega-3 and vitamin D co-supplementation as a potential safe-effective therapeutic strategy to treat core symptoms of ASD. However, larger studies are needed to evaluate the real efficacy of such therapeutic approach in a broader sample of ASD patients.


Asunto(s)
Trastorno del Espectro Autista/dietoterapia , Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Vitamina D/administración & dosificación , Vitaminas/administración & dosificación , Adulto , Trastorno del Espectro Autista/sangre , Ácidos Grasos Omega-3/sangre , Humanos , Masculino , Resultado del Tratamiento , Vitamina D/sangre , Adulto Joven
20.
Nutrients ; 11(11)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653011

RESUMEN

Plasma fatty acids (FAs) and oxidant status contribute to the etiology of sarcopenia in the elderly concurring to age-related muscle loss and elderly frailty through several mechanisms including changes in FA composition within the sarcolemma, promotion of chronic low-grade inflammation, and insulin resistance. The aim of this study was to determine the FA profile and pro-antioxidant status in sarcopenic frail elderly patients enrolled in a nutritional and physical activity program and to evaluate their correlation with clinical markers. Moreover, the possible changes, produced after a short-term clinical protocol, were evaluated. Plasma and erythrocyte FA composition and pro-antioxidant status were analyzed in sarcopenic elderly subjects recruited for the randomized clinical study and treated with a placebo or dietary supplement, a personalized diet, and standardized physical activity. Subjects were tested before and after 30 days of treatment. Pearson correlations between biochemical parameters and patients' characteristics at recruitment indicate interesting features of sarcopenic status such as negative correlation among the plasma FA profile, age, and physical characteristics. Physical activity and dietetic program alone for 30 days induced a decrease of saturated FA concentration with a significant increase of dihomo-gamma-linolenic acid. Supplementation plus physical activity induced a significant decrease of linoleic acid, omega-6 polyunsaturated FAs, and an increase of stearic and oleic acid concentration. Moreover, glutathione reductase activity, which is an indicator of antioxidant status, significantly increased in erythrocytes. Changes over time between groups indicate significant differences for saturated FAs, which suggest that the amino acid supplementation restores FA levels that are consumed during physical activity. A relationship between FA and clinical/metabolic status revealed unique correlations and a specific metabolic and lipidomic fingerprint in sarcopenic elderly. The results indicate the positive beneficial role of supplementation and physical activity on plasma FA status and the antioxidant system as a co-adjuvant approach in sarcopenic, frail, elderly patients.


Asunto(s)
Antioxidantes/metabolismo , Dieta , Ejercicio Físico , Ácidos Grasos/sangre , Sarcopenia , Anciano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA