Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
NPJ Sci Learn ; 9(1): 34, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698023

RESUMEN

During timing tasks, the brain learns the statistical distribution of target intervals and integrates this prior knowledge with sensory inputs to optimise task performance. Daily events can have different temporal statistics (e.g., fastball/slowball in baseball batting), making it important to learn and retain multiple priors. However, the rules governing this process are not yet understood. Here, we demonstrate that the learning of multiple prior distributions in a coincidence timing task is characterised by body-part specificity. In our experiments, two prior distributions (short and long intervals) were imposed on participants. When using only one body part for timing responses, regardless of the priors, participants learned a single prior by generalising over the two distributions. However, when the two priors were assigned to different body parts, participants concurrently learned the two independent priors. Moreover, body-part specific prior acquisition was faster when the priors were assigned to anatomically distant body parts (e.g., hand/foot) than when they were assigned to close body parts (e.g., index/middle fingers). This suggests that the body-part specific learning of priors is organised according to somatotopy.

2.
Evol Anthropol ; 32(1): 39-53, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36223539

RESUMEN

Hominin footprints have not traditionally played prominent roles in paleoanthropological studies, aside from the famous 3.66 Ma footprints discovered at Laetoli, Tanzania in the late 1970s. This contrasts with the importance of trace fossils (ichnology) in the broader field of paleontology. Lack of attention to hominin footprints can probably be explained by perceptions that these are exceptionally rare and "curiosities" rather than sources of data that yield insights on par with skeletal fossils or artifacts. In recent years, however, discoveries of hominin footprints have surged in frequency, shining important new light on anatomy, locomotion, behaviors, and environments from a wide variety of times and places. Here, we discuss why these data are often overlooked and consider whether they are as "rare" as previously assumed. We review new ways footprint data are being used to address questions about hominin paleobiology, and we outline key opportunities for future research in hominin ichnology.


Asunto(s)
Hominidae , Animales , Hominidae/anatomía & histología , Fósiles , Paleontología , Locomoción
3.
J Vis ; 22(11): 7, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36223110

RESUMEN

Exposure to a dynamic texture reduces the perceived separation between objects, altering the mapping between physical relations in the environment and their neural representations. Here we investigated the spatial tuning and spatial frame of reference of this aftereffect to understand the stage(s) of processing where adaptation-induced changes occur. In Experiment 1, we measured apparent separation at different positions relative to the adapted area, revealing a strong but tightly tuned compression effect. We next tested the spatial frame of reference of the effect, either by introducing a gaze shift between adaptation and test phase (Experiment 2) or by decoupling the spatial selectivity of adaptation in retinotopic and world-centered coordinates (Experiment 3). Results across the two experiments indicated that both retinotopic and world-centered adaptation effects can occur independently. Spatial attention to the location of the adaptor alone could not account for the world-centered transfer we observed, and retinotopic adaptation did not transfer to world-centered coordinates after a saccade (Experiment 4). Finally, we found that aftereffects in different reference frames have a similar, narrow spatial tuning profile (Experiment 5). Together, our results suggest that the neural representation of local separation resides early in the visual cortex, but it can also be modulated by activity in higher visual areas.


Asunto(s)
Retina , Corteza Visual , Adaptación Fisiológica , Humanos , Estimulación Luminosa/métodos , Movimientos Sacádicos
4.
Schizophr Res Cogn ; 28: 100229, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34976749

RESUMEN

Accumulating evidence suggests that deficits in perceptual inference account for symptoms of schizophrenia. One manifestation of perceptual inference is the central bias, i.e., the tendency to put emphasis on prior experiences over actual events in perceiving incoming sensory stimuli. Using an interval reproduction task, this study aimed to determine whether patients with schizophrenia show a stronger central bias than participants without schizophrenia. In the interval reproduction task, participants were shown a cross on a screen. The cross was replaced with a Gaussian patch for a predetermined time interval, and participants were required to reproduce the interval duration by pressing and releasing the space key. We manipulated the uncertainty of prior information using different interval distributions. We found no difference in the influence of prior information on interval reproduction between patients and controls. However, patients with SZ showed a stronger central bias than healthy participants in the intermediate interval range (approximately 450 ms to 900 ms). It is possible that the patients in SZ have non-uniform deficits associated with interval range or uncertainty of prior information in perceptual inference. Further, the severity of avolition and alogia was correlated with the strength of central bias in SZ. This study provides some insights into the mechanisms underlying the association between schizophrenic symptoms and perceptual inference.

5.
PLoS One ; 16(5): e0251827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33999940

RESUMEN

In dynamic multisensory environments, the perceptual system corrects for discrepancies arising between modalities. For instance, in the ventriloquism aftereffect (VAE), spatial disparities introduced between visual and auditory stimuli lead to a perceptual recalibration of auditory space. Previous research has shown that the VAE is underpinned by multiple recalibration mechanisms tuned to different timescales, however it remains unclear whether these mechanisms use common or distinct spatial reference frames. Here we asked whether the VAE operates in eye- or head-centred reference frames across a range of adaptation timescales, from a few seconds to a few minutes. We developed a novel paradigm for selectively manipulating the contribution of eye- versus head-centred visual signals to the VAE by manipulating auditory locations relative to either the head orientation or the point of fixation. Consistent with previous research, we found both eye- and head-centred frames contributed to the VAE across all timescales. However, we found no evidence for an interaction between spatial reference frames and adaptation duration. Our results indicate that the VAE is underpinned by multiple spatial reference frames that are similarly leveraged by the underlying time-sensitive mechanisms.


Asunto(s)
Adaptación Fisiológica , Percepción Auditiva/fisiología , Movimientos Oculares/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Análisis de Varianza , Femenino , Humanos , Masculino , Estimulación Luminosa , Localización de Sonidos/fisiología , Adulto Joven
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526665

RESUMEN

Perceptual stability is facilitated by a decrease in visual sensitivity during rapid eye movements, called saccadic suppression. While a large body of evidence demonstrates that saccadic programming is plastic, little is known about whether the perceptual consequences of saccades can be modified. Here, we demonstrate that saccadic suppression is attenuated during learning on a standard visual detection-in-noise task, to the point that it is effectively silenced. Across a period of 7 days, 44 participants were trained to detect brief, low-contrast stimuli embedded within dynamic noise, while eye position was tracked. Although instructed to fixate, participants regularly made small fixational saccades. Data were accumulated over a large number of trials, allowing us to assess changes in performance as a function of the temporal proximity of stimuli and saccades. This analysis revealed that improvements in sensitivity over the training period were accompanied by a systematic change in the impact of saccades on performance-robust saccadic suppression on day 1 declined gradually over subsequent days until its magnitude became indistinguishable from zero. This silencing of suppression was not explained by learning-related changes in saccade characteristics and generalized to an untrained retinal location and stimulus orientation. Suppression was restored when learned stimulus timing was perturbed, consistent with the operation of a mechanism that temporarily reduces or eliminates saccadic suppression, but only when it is behaviorally advantageous to do so. Our results indicate that learning can circumvent saccadic suppression to improve performance, without compromising its functional benefits in other viewing contexts.


Asunto(s)
Aprendizaje/fisiología , Movimientos Sacádicos/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Factores de Tiempo , Percepción Visual/fisiología , Adulto Joven
7.
J Neurophysiol ; 125(2): 609-619, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33378248

RESUMEN

Sensitivity to subtle changes in the shape of visual objects has been attributed to the existence of global pooling mechanisms that integrate local form information across space. Although global pooling is typically demonstrated under steady fixation, other work suggests prolonged fixation can lead to a collapse of global structure. Here, we ask whether small ballistic eye movements that naturally occur during periods of fixation affect the global processing of radial frequency (RF) patterns-closed contours created by sinusoidally modulating the radius of a circle. Observers were asked to discriminate the shapes of circular patterns and RF-modulated patterns while fixational eye movements were recorded binocularly at 500 Hz. Microsaccades were detected using a velocity-based algorithm, allowing trials to be sorted according to the relative timing of stimulus and microsaccade onset. Results revealed clear perisaccadic changes in shape discrimination thresholds. Performance was impaired when microsaccades occurred close to stimulus onset, but facilitated when they occurred shortly afterward. In contrast, global integration of shape was unaffected by the timing of microsaccades. These findings suggest that microsaccades alter the discrimination sensitivity to briefly presented shapes but do not disrupt the spatial pooling of local form signals.NEW & NOTEWORTHY Microsaccades cause rapid displacement of visual images during fixation and dramatically alter the perception of basic image features. However, their effect on more complex aspects of visual processing is not well understood. Here, we demonstrate a dissociation in the impact of microsaccades on shape perception. Although overall shape discrimination performance is modulated around the time of microsaccades, the pooling efficiency of global mechanisms that combine local form information across space remains unaffected.


Asunto(s)
Movimientos Sacádicos , Percepción Visual/fisiología , Discriminación en Psicología , Humanos , Umbral Sensorial
8.
Sci Rep ; 10(1): 11413, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636428

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Clin Biomech (Bristol, Avon) ; 78: 105091, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32580097

RESUMEN

BACKGROUND: Numerous studies have reported an association between rotator cuff injury and two-dimensional measures of scapular morphology. However, the mechanical underpinnings explaining how these shape features affect glenohumeral joint function and lead to injury are poorly understood. We hypothesized that three-dimensional features of scapular morphology differentiate asymptomatic shoulders from those with rotator cuff tears, and that these features would alter the mechanical advantage of the supraspinatus. METHODS: Twenty-four individuals with supraspinatus tears and twenty-seven age-matched controls were recruited. A statistical shape analysis identified scapular features distinguishing symptomatic patients from asymptomatic controls. We examined the effect of injury-associated morphology on mechanics by developing a morphable model driven by six degree-of-freedom biplanar videoradiography data. We used the model to simulate abduction for a range of shapes and computed the supraspinatus moment arm. FINDINGS: Rotator cuff injury was associated with a cranial orientation of the glenoid and scapular spine (P = .011, d = 0.75) and/or decreased subacromial space (P = .001, d = 0.94). The shape analysis also identified previously undocumented features associated with superior inclination and subacromial narrowing. In our computational model, warping the scapula from a cranial to a lateral orientation increased the supraspinatus moment arm at 20° of abduction and decreased the moment arm at 160° of abduction. INTERPRETATIONS: Three-dimensional analysis of scapular morphology indicates a stronger relationship between morphology and cuff tears than two-dimensional measures. Insight into how morphological features affect rotator cuff mechanics may improve patient-specific strategies for prevention and treatment of cuff tears.


Asunto(s)
Fenómenos Mecánicos , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/fisiopatología , Manguito de los Rotadores/patología , Manguito de los Rotadores/fisiopatología , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Articulación del Hombro/fisiopatología
10.
Sci Rep ; 10(1): 8654, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457383

RESUMEN

Sensory adaptation experiments have revealed the existence of 'rate after-effects' - adapting to a relatively fast rate makes an intermediate test rate feel slow, and adapting to a slow rate makes the same moderate test rate feel fast. The present work aims to deconstruct the concept of rate and clarify how exactly the brain processes a regular sequence of sensory signals. We ask whether rate forms a distinct perceptual metric, or whether it is simply the perceptual aggregate of the intervals between its component signals. Subjects were exposed to auditory or visual temporal rates (a 'slow' rate of 1.5 Hz and a 'fast' rate of 6 Hz), before being tested with single unfilled intervals of varying durations. Results show adapting to a given rate strongly influences the perceived duration of a single empty interval. This effect is robust across both interval reproduction and duration discrimination judgments. These findings challenge our understanding of rate perception. Specifically, they suggest that contrary to some previous assertions, the perception of sequence rate is strongly influenced by the perception of the sequence's component duration intervals.

11.
Cell ; 181(2): 362-381.e28, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32220312

RESUMEN

During human evolution, the knee adapted to the biomechanical demands of bipedalism by altering chondrocyte developmental programs. This adaptive process was likely not without deleterious consequences to health. Today, osteoarthritis occurs in 250 million people, with risk variants enriched in non-coding sequences near chondrocyte genes, loci that likely became optimized during knee evolution. We explore this relationship by epigenetically profiling joint chondrocytes, revealing ancient selection and recent constraint and drift on knee regulatory elements, which also overlap osteoarthritis variants that contribute to disease heritability by tending to modify constrained functional sequence. We propose a model whereby genetic violations to regulatory constraint, tolerated during knee development, lead to adult pathology. In support, we discover a causal enhancer variant (rs6060369) present in billions of people at a risk locus (GDF5-UQCC1), showing how it impacts mouse knee-shape and osteoarthritis. Overall, our methods link an evolutionarily novel aspect of human anatomy to its pathogenesis.


Asunto(s)
Condrocitos/fisiología , Articulación de la Rodilla/fisiología , Osteoartritis/genética , Animales , Evolución Biológica , Condrocitos/metabolismo , Evolución Molecular , Predisposición Genética a la Enfermedad/genética , Factor 5 de Diferenciación de Crecimiento/genética , Factor 5 de Diferenciación de Crecimiento/metabolismo , Células HEK293 , Humanos , Rodilla/fisiología , Ratones , Células 3T3 NIH , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Riesgo
12.
J Vis ; 19(13): 12, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747690

RESUMEN

Macular degeneration and related visual disorders greatly limit foveal function, resulting in reliance on the peripheral retina for tasks requiring fine spatial vision. Here we investigate stimulus manipulations intended to maximize peripheral acuity for dynamic targets. Acuity was measured using a single interval orientation discrimination task at 10° eccentricity. Two types of image motion were investigated along with two different forms of temporal manipulation. Smooth object motion was generated by translating targets along an isoeccentric path at a constant speed (0-20°/s). Ocular motion was simulated by jittering target location using previously recorded fixational eye movement data, amplified by a variable gain factor (0-8). In one stimulus manipulation, the sequence was temporally subsampled by displaying the target on an evenly spaced subset of video frames. In the other, the contrast polarity of the stimulus was reversed at a variable rate. We found that threshold under object motion was improved at all speeds by reversing contrast polarity, while temporal subsampling improved resolution at high speeds but impaired performance at low speeds. With simulated ocular motion, thresholds were consistently improved by contrast polarity reversal, but impaired by temporal subsampling. We find that contrast polarity reversal and temporal subsampling produce differential effects on peripheral acuity. Applying contrast polarity reversal may offer a relatively simple image manipulation that could enhance visual performance in individuals with central vision loss.


Asunto(s)
Percepción de Movimiento/fisiología , Agudeza Visual/fisiología , Campos Visuales/fisiología , Adulto , Femenino , Fijación Ocular/fisiología , Humanos , Masculino , Umbral Sensorial/fisiología , Análisis Espacio-Temporal , Adulto Joven
13.
Sci Rep ; 9(1): 8513, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186503

RESUMEN

To maintain perceptual coherence, the brain corrects for discrepancies between the senses. If, for example, lights are consistently offset from sounds, representations of auditory space are remapped to reduce this error (spatial recalibration). While recalibration effects have been observed following both brief and prolonged periods of adaptation, the relative contribution of discrepancies occurring over these timescales is unknown. Here we show that distinct multisensory recalibration mechanisms operate in remote and recent history. To characterise the dynamics of this spatial recalibration, we adapted human participants to audio-visual discrepancies for different durations, from 32 to 256 seconds, and measured the aftereffects on perceived auditory location. Recalibration effects saturated rapidly but decayed slowly, suggesting a combination of transient and sustained adaptation mechanisms. When long-term adaptation to an audio-visual discrepancy was immediately followed by a brief period of de-adaptation to an opposing discrepancy, recalibration was initially cancelled but subsequently reappeared with further testing. These dynamics were best fit by a multiple-exponential model that monitored audio-visual discrepancies over distinct timescales. Recent and remote recalibration mechanisms enable the brain to balance rapid adaptive changes to transient discrepancies that should be quickly forgotten against slower adaptive changes to persistent discrepancies likely to be more permanent.


Asunto(s)
Percepción Auditiva/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adaptación Fisiológica , Adulto , Calibración , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Modelos Biológicos , Estimulación Luminosa , Adulto Joven
14.
Sci Rep ; 9(1): 3016, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816131

RESUMEN

In conflict with historically dominant models of time perception, recent evidence suggests that the encoding of our environment's temporal properties may not require a separate class of neurons whose raison d'être is the dedicated processing of temporal information. If true, it follows that temporal processing should be imbued with the known selectivity found within non-temporal neurons. In the current study, we tested this hypothesis for the processing of a poorly understood stimulus parameter: visual event duration. We used sensory adaptation techniques to generate duration aftereffects: bidirectional distortions of perceived duration. Presenting adapting and test durations to the same vs different eyes utilises the visual system's anatomical progression from monocular, pre-cortical neurons to their binocular, cortical counterparts. Duration aftereffects exhibited robust inter-ocular transfer alongside a small but significant contribution from monocular mechanisms. We then used novel stimuli which provided duration information that was invisible to monocular neurons. These stimuli generated robust duration aftereffects which showed partial selectivity for adapt-test changes in retinal disparity. Our findings reveal distinct duration encoding mechanisms at monocular, depth-selective and depth-invariant stages of the visual hierarchy.


Asunto(s)
Adaptación Fisiológica/fisiología , Percepción de Profundidad/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Visión Ocular/fisiología , Aclimatación/fisiología , Cara/fisiología , Humanos , Neuronas/fisiología , Estimulación Luminosa/métodos , Percepción del Tiempo/fisiología , Disparidad Visual/fisiología
15.
Invest Ophthalmol Vis Sci ; 59(13): 5408-5416, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452594

RESUMEN

Purpose: Even during steady fixation, people make small eye movements such as microsaccades, whose rate is altered by presentation of salient stimuli. Our goal was to develop a practical method for objectively and robustly estimating contrast sensitivity from microsaccade rates in a diverse population. Methods: Participants, recruited to cover a range of contrast sensitivities, were visually normal (n = 19), amblyopic (n = 10), or had cataract (n = 9). Monocular contrast sensitivity was estimated behaviorally while binocular eye movements were recorded during interleaved passive trials. A probabilistic inference approach was used to establish the likelihood of observed microsaccade rates given the presence or absence of a salient stimulus. Contrast sensitivity was estimated from a function fitted to the scaled log-likelihood ratio of the observed microsaccades in the presence or absence of a salient stimulus across a range of contrasts. Results: Microsaccade rate signature shapes were heterogeneous; nevertheless, estimates of contrast sensitivity could be obtained in all participants. Microsaccade-estimated contrast sensitivity was unbiased compared to behavioral estimates (1.2% mean), with which they were strongly correlated (Spearman's ρ 0.74, P < 0.001, median absolute difference 7.6%). Measurement precision of microsaccade-based contrast sensitivity estimates was worse than that of behavioral estimates, requiring more than 20 times as many presentations to equate precision. Conclusions: Microsaccade rate signatures are heterogeneous in shape when measured across populations with a broad range of contrast sensitivities. Contrast sensitivity can be robustly estimated from rate signatures by probabilistic inference, but more stimulus presentations are currently required to achieve similarly precise estimates to behavioral techniques.


Asunto(s)
Sensibilidad de Contraste/fisiología , Fijación Ocular/fisiología , Movimientos Sacádicos/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Atención , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Visión , Percepción Visual , Adulto Joven
16.
J Hum Evol ; 122: 70-83, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29970233

RESUMEN

The ecological and selective forces that sparked the emergence of Homo's adaptive strategy remain poorly understood. New fossil and archaeological finds call into question previous interpretations of the grade shift that drove our ancestors' evolutionary split from the australopiths. Furthermore, issues of taphonomy and scale have limited reconstructions of the hominin habitats and faunal communities that define the environmental context of these behavioral changes. The multiple ∼1.5 Ma track surfaces from the Okote Member of the Koobi Fora Formation at East Turkana provide unique windows for examining hominin interactions with the paleoenvironment and associated faunas at high spatiotemporal resolution. These surfaces preserve the tracks of many animals, including cf. Homo erectus. Here, we examine the structure of the animal community that inhabited this landscape, considering effects of preservation bias by comparing the composition of the track assemblage to a skeletal assemblage from the same time and place. We find that the track and skeletal assemblages are similar in their representation of the vertebrate paleocommunity, with comparable levels of taxonomic richness and diversity. Evenness (equitability of the number of individuals per taxon) differs between the two assemblages due to the very different circumstances of body fossil versus track preservation. Both samples represent diverse groups of taxa including numerous water-dependent species, consistent with geological interpretations of the track site environments. Comparisons of these assemblages also show a pattern of non-random hominin association with a marginal lacustrine habitat relative to other vertebrates in the track assemblage. This evidence is consistent with behavior that included access to aquatic foods and possibly hunting by H. erectus in lake margins/edaphic grasslands. Such behaviors may signal the emergence of the adaptative strategies that define our genus.


Asunto(s)
Arqueología , Biota , Aves , Fósiles , Mamíferos , Reptiles , Animales , Hominidae , Kenia , Rasgos de la Historia de Vida , Paleontología
17.
J Vis ; 18(3): 12, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29677327

RESUMEN

It has recently been shown that adapting to a densely textured stimulus alters the perception of visual space, such that the distance between two points subsequently presented in the adapted region appears reduced (Hisakata, Nishida, & Johnston, 2016). We asked whether this form of adaptation-induced spatial compression alters visual crowding. To address this question, we first adapted observers to a dynamic dot texture presented within an annular region surrounding the test location. Following adaptation, observers perceived a test array comprised of multiple oriented dot dipoles as spatially compressed, resulting in an overall reduction in perceived size. We then tested to what extent this spatial compression influences crowding by measuring orientation discrimination of a single dipole flanked by randomly oriented dipoles across a range of separations. Following adaptation, we found that the magnitude of crowding was predicted by the physical rather than perceptual separation between center and flanking dipoles. These findings contrast with previous studies in which crowding has been shown to increase when motion-induced position shifts act to reduce apparent separation (Dakin, Greenwood, Carlson, & Bex, 2011; Maus, Fischer, & Whitney, 2011).


Asunto(s)
Adaptación Ocular/fisiología , Aglomeración , Percepción Espacial/fisiología , Humanos , Orientación , Psicometría , Procesamiento Espacial , Adulto Joven
18.
J Neurophysiol ; 119(6): 2059-2067, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488842

RESUMEN

During periods of steady fixation, we make small-amplitude ocular movements, termed microsaccades, at a rate of 1-2 every second. Early studies provided evidence that visual sensitivity is reduced during microsaccades-akin to the well-established suppression associated with larger saccades. However, the results of more recent work suggest that microsaccades may alter retinal input in a manner that enhances visual sensitivity to some stimuli. Here we parametrically varied the spatial frequency of a stimulus during a detection task and tracked contrast sensitivity as a function of time relative to microsaccades. Our data reveal two distinct modulations of sensitivity: suppression during the eye movement itself and facilitation after the eye has stopped moving. The magnitude of suppression and facilitation of visual sensitivity is related to the spatial content of the stimulus: suppression is greatest for low spatial frequencies, while sensitivity is enhanced most for stimuli of 1-2 cycles/°, spatial frequencies at which we are already most sensitive in the absence of eye movements. We present a model in which the tuning of suppression and facilitation is explained by delayed lateral inhibition between spatial frequency channels. Our data show that eye movements actively modulate visual sensitivity even during fixation: the detectability of images at different spatial scales can be increased or decreased depending on when the image occurs relative to a microsaccade. NEW & NOTEWORTHY Given the frequency with which we make microsaccades during periods of fixation, it is vital that we understand how they affect visual processing. We demonstrate two selective modulations of contrast sensitivity that are time-locked to the occurrence of a microsaccade: suppression of low spatial frequencies during each eye movement and enhancement of higher spatial frequencies after the eye has stopped moving. These complementary changes may arise naturally because of sluggish gain control between spatial channels.


Asunto(s)
Fijación Ocular , Umbral Sensorial , Percepción Visual , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Inhibición Neural , Movimientos Sacádicos
19.
Sci Rep ; 8(1): 924, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343859

RESUMEN

Accurate time perception is critical for a number of human behaviours, such as understanding speech and the appreciation of music. However, it remains unresolved whether sensory time perception is mediated by a central timing component regulating all senses, or by a set of distributed mechanisms, each dedicated to a single sensory modality and operating in a largely independent manner. To address this issue, we conducted a range of unimodal and cross-modal rate adaptation experiments, in order to establish the degree of specificity of classical after-effects of sensory adaptation. Adapting to a fast rate of sensory stimulation typically makes a moderate rate appear slower (repulsive after-effect), and vice versa. A central timing hypothesis predicts general transfer of adaptation effects across modalities, whilst distributed mechanisms predict a high degree of sensory selectivity. Rate perception was quantified by a method of temporal reproduction across all combinations of visual, auditory and tactile senses. Robust repulsive after-effects were observed in all unimodal rate conditions, but were not observed for any cross-modal pairings. Our results show that sensory timing abilities are adaptable but, crucially, that this change is modality-specific - an outcome that is consistent with a distributed sensory timing hypothesis.


Asunto(s)
Percepción Auditiva/fisiología , Células Receptoras Sensoriales/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adulto , Femenino , Humanos , Masculino , Música , Estimulación Luminosa/métodos , Psicofísica/métodos , Tacto/fisiología
20.
Neurosci Biobehav Rev ; 83: 32-45, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965963

RESUMEN

A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research.


Asunto(s)
Percepción de Movimiento/fisiología , Trastornos del Neurodesarrollo/fisiopatología , Trastornos de la Visión/etiología , Visión Ocular/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA