Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipids ; 2011: 409371, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21490801

RESUMEN

Lipid droplets are not merely storage depots for superfluous intracellular lipids in times of hyperlipidemic stress, but metabolically active organelles involved in cellular homeostasis. Our concepts on the metabolic functions of lipid droplets have come from studies on lipid droplet-associated proteins. This realization has made the study of proteins, such as PAT family proteins, caveolins, and several others that are targeted to lipid droplets, an intriguing and rapidly developing area of intensive inquiry. Our existing understanding of the structure, protein organization, and biogenesis of the lipid droplet has relied heavily on microscopical techniques that lack resolution and the ability to preserve native cellular and protein composition. Freeze-fracture replica immunogold labeling overcomes these disadvantages and can be used to define at high resolution the precise location of lipid droplet-associated proteins. In this paper illustrative examples of how freeze-fracture immunocytochemistry has contributed to our understanding of the spatial organization in the membrane plane and function of PAT family proteins and caveolin-1 are presented. By revisiting the lipid droplet with freeze-fracture immunocytochemistry, new perspectives have emerged which challenge prevailing concepts of lipid droplet biology and may hopefully provide a timely impulse for many ongoing studies.

2.
Biochim Biophys Acta ; 1791(6): 408-18, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19118639

RESUMEN

Our existing understanding of the structure, protein organization and biogenesis of the lipid droplet has relied heavily on microscopical techniques that lack resolution and the ability to preserve native cellular and protein composition. The electron microscopic technique of freeze-fracture replica immunogold labeling (FRIL) overcomes these problems, and is currently providing new perspectives in the field. Because of the property of frozen lipids to deflect the fracture plane, en face views of the lipid droplet and its component layers are revealed for high resolution visualization. By means of immunogold labeling, proteins involved in the accretion and mobilization of lipids, notably the PAT family proteins, can be localized at and in the droplet. Application of this approach demonstrates that, contrary to prevailing wisdom, the PAT family proteins are not invariably restricted to the surface of the lipid droplet but can occur throughout the core. The notion that lipid droplet biogenesis involves neutral lipid accumulation within the ER membrane bilayer followed by budding off, enclosed by a protein-containing phospholipid monolayer, is not substantiated. Instead, lipid droplets appear to develop externally to both ER membranes at specialized sites in which the ER enwraps the droplet, and the facing leaflets of the ER membrane and droplet surface are enriched in adipophilin. PAT family proteins are not, as often stated, specific to the lipid droplet, but are widely present in the plasma membrane where, under conditions of lipid loading, they adopt a similar configuration to that of specialized sites in the ER. FRIL has further provided new insights into the mechanism of secretion of a special type of lipid droplet, the milk fat globule. These examples highlight the contribution of the FRIL technique to critical appraisal and development of concepts in the lipid droplet field.


Asunto(s)
Aciltransferasas/metabolismo , Retículo Endoplásmico/enzimología , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Metabolismo de los Lípidos , Orgánulos/enzimología , Péptidos/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Técnica de Fractura por Congelación , Humanos , Gotas Lipídicas , Proteínas de la Membrana , Microscopía Electrónica , Tamaño de los Orgánulos , Orgánulos/metabolismo , Orgánulos/ultraestructura , Perilipina-2 , Transporte de Proteínas
3.
J Cell Sci ; 119(Pt 20): 4215-24, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16984971

RESUMEN

The prevailing hypothesis of lipid droplet biogenesis proposes that neutral lipids accumulate within the lipid bilayer of the ER membrane from where they are budded off, enclosed by a protein-bearing phospholipid monolayer originating from the cytoplasmic leaflet of the ER membrane. We have used a variety of methods to investigate the nature of the sites of ER-lipid-droplet association in order to gain new insights into the mechanism of lipid droplet formation and growth. The three-dimensional perspectives provided by freeze-fracture electron microscopy demonstrate unequivocally that at sites of close association, the lipid droplet is not situated within the ER membrane; rather, both ER membranes lie external to and follow the contour of the lipid droplet, enclosing it in a manner akin to an egg cup (the ER) holding an egg (the lipid droplet). Freeze-fracture cytochemistry demonstrates that the PAT family protein adipophilin is concentrated in prominent clusters in the cytoplasmic leaflet of the ER membrane closely apposed to the lipid droplet envelope. We identify these structures as sites at which lipids and adipophilin are transferred from ER membranes to lipid droplets. These findings call for a re-evaluation of the prevailing hypothesis of lipid droplet biogenesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lípidos/biosíntesis , Péptidos/análisis , Western Blotting , Células Cultivadas , Microscopía por Crioelectrón , Retículo Endoplásmico/ultraestructura , Técnica de Fractura por Congelación/métodos , Humanos , Proteínas de la Membrana , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Perilipina-2
4.
Proc Natl Acad Sci U S A ; 103(27): 10385-10390, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16801554

RESUMEN

The molecular mechanism underlying milk fat globule secretion in mammary epithelial cells ostensibly involves the formation of complexes between plasma membrane butyrophilin and cytosolic xanthine oxidoreductase. These complexes bind adipophilin in the phospholipid monolayer of milk secretory granules, the precursors of milk fat globules, enveloping the nascent fat globules in a layer of plasma membrane and pinching them off the cell. However, using freeze-fracture immunocytochemistry, we find these proteins in locations other than those previously inferred. Significantly, butyrophilin in the residual plasma membrane of the fat globule envelope is concentrated in a network of ridges that are tightly apposed to the monolayer derived from the secretory granule, and the ridges coincide with butyrophilin labeling in the globule monolayer. Therefore, we propose that milk fat globule secretion is controlled by interactions between plasma membrane butyrophilin and butyrophilin in the secretory granule phospholipid monolayer rather than binding of butyrophilin-xanthine oxidoreductase complexes to secretory granule adipophilin.


Asunto(s)
Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/farmacología , Anticuerpos/inmunología , Butirofilinas , Microscopía por Crioelectrón , Técnica de Fractura por Congelación , Glucolípidos/inmunología , Glicoproteínas/inmunología , Glicoproteínas/ultraestructura , Humanos , Inmunohistoquímica , Gotas Lipídicas , Microscopía Fluorescente
5.
Blood ; 107(7): 2943-51, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16368881

RESUMEN

The synthesis of nitric oxide (NO) in the circulation has been attributed exclusively to the vascular endothelium. Red blood cells (RBCs) have been demonstrated to carry a nonfunctional NO synthase (NOS) and, due to their huge hemoglobin content, have been assumed to metabolize large quantities of NO. More recently, however, RBCs have been identified to reversibly bind, transport, and release NO within the cardiovascular system. We now provide evidence that RBCs from humans express an active and functional endothelial-type NOS (eNOS), which is localized in the plasma membrane and the cytoplasm of RBCs. This NOS is regulated by its substrate L-arginine, by calcium, and by phosphorylation via PI3 kinase. RBC-NOS activity regulates deformability of RBC membrane and inhibits activation of platelets. The NOS-dependent conversion of L-arginine in RBCs is comparable to that of cultured human endothelial cells. RBCs in eNOS-/- mice in contrast to wild-type mice lack NOS protein and activity, strengthening the evidence of an eNOS in RBCs. These data show an eNOS-like protein and activity in RBCs serving regulatory functions in RBCs and platelets, which may stimulate new approaches in the treatment of NO deficiency states inherent to several vascular and hematologic diseases.


Asunto(s)
Eritrocitos/enzimología , Óxido Nítrico Sintasa de Tipo III/sangre , Secuencia de Bases , Membrana Celular/enzimología , Cartilla de ADN , Humanos , Óxido Nítrico Sintasa de Tipo III/genética , ARN Mensajero/genética , Valores de Referencia
6.
J Biol Chem ; 280(28): 26330-8, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15897193

RESUMEN

Proteins of the PAT family, named after perilipin, adipophilin, and TIP47 (tail-interacting protein of 47 kDa), are associated with lipid droplets and have previously been localized by immunofluorescence microscopy exclusively to the droplet surface. These proteins are considered not to be present in any other subcellular compartment. By applying the high resolution technique of freeze-fracture electron microscopy combined with immunogold labeling, we now demonstrate that in macrophages and adipocytes PAT family proteins are, first, distributed not only in the surface but also throughout the lipid droplet core and, second, are integral components of the plasma membrane. Under normal culture conditions these proteins are dispersed in the cytoplasmic leaflet of the plasma membrane. Stimulation of lipid droplet formation by incubation of the cells with acetylated low density lipoprotein leads to clustering of the PAT family proteins in raised plasma membrane domains. Fractures penetrating beneath the plasma membrane demonstrate that lipid droplets are closely apposed to these domains. A similar distribution pattern of labeling in the form of linear aggregates within the clusters is apparent in the cytoplasmic monolayer of the plasma membrane and the immediately adjacent outer monolayer of the lipid droplet. The aggregation of the PAT family proteins into such assemblies may facilitate carrier-mediated lipid influx from the extracellular environment into the lipid droplet. Lipid droplets appear to acquire their PAT proteins by interaction with plasma membrane domains enriched in these proteins.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/ultraestructura , Animales , Proteínas Portadoras , Caveolina 1 , Caveolinas/metabolismo , Línea Celular , Proteínas de Unión al ADN/química , Técnica de Fractura por Congelación , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/química , Macrófagos/metabolismo , Proteínas de la Membrana , Ratones , Microscopía Confocal , Microscopía Electrónica , Microscopía Fluorescente , Monocitos/metabolismo , Péptidos/química , Perilipina-1 , Perilipina-2 , Perilipina-3 , Fosfoproteínas/química , Proteínas Gestacionales/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Transporte Vesicular
7.
J Lipid Res ; 46(6): 1331-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15741656

RESUMEN

The PAT family proteins, named after perilipin, adipophilin, and the tail-interacting protein of 47 kDa (TIP47), are implicated in intracellular lipid metabolism. They associate with lipid droplets, but how is completely unclear. From immunofluorescence studies, they are reported to be restricted to the outer membrane monolayer enveloping the lipid droplet and not to enter the core. Recently, we found another kind of lipid droplet-associated protein, caveolin-1, inside lipid droplets. Using freeze-fracture immunocytochemistry and electron microscopy, we now describe the distributions of perilipin and caveolin-1 and of adipophilin and TIP47 in lipid droplets of adipocytes and macrophages. All of these lipid droplet-associated proteins pervade the lipid droplet core and hence are not restricted to the droplet surface. Moreover, lipid droplets are surprisingly heterogeneous with respect to their complements and their distribution of lipid droplet-associated proteins. Whereas caveolin-1 is synthesized in the endoplasmic reticulum and is transferred to the lipid droplet core by inundating lipids during droplet budding, the PAT proteins, which are synthesized on free ribosomes in the cytoplasm, evidently target to the lipid droplet after it has formed. How the polar lipid droplet-associated proteins are accommodated among the essentially hydrophobic neutral lipids of the lipid droplet core remains to be determined.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Péptidos/fisiología , Fosfoproteínas/fisiología , Proteínas Gestacionales/fisiología , Adipocitos/metabolismo , Proteínas Portadoras , Caveolina 1 , Caveolinas/metabolismo , Línea Celular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Técnica de Fractura por Congelación , Humanos , Inmunohistoquímica , Metabolismo de los Lípidos , Macrófagos/metabolismo , Proteínas de la Membrana , Microscopía Electrónica , Microscopía Fluorescente , Péptidos/metabolismo , Perilipina-1 , Perilipina-2 , Perilipina-3 , Fosfoproteínas/metabolismo , Ribosomas/metabolismo , Proteínas de Transporte Vesicular
8.
FASEB J ; 18(7): 866-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15001554

RESUMEN

Caveolin-1, a putative mediator of intracellular cholesterol transport, is generally assumed to be integrated into the cytoplasmic leaflets of all cellular membranes. Lipid droplets form by budding at the endoplasmic reticulum (ER), and caveolin-1 is thought to be transferred to the droplet surface along with the cytoplasmic leaflet of ER membranes and not to enter the droplet core. We explored how caveolin-1 accesses lipid droplets from the ER by localizing caveolin-1 in ER membranes and in lipid droplets in cultured smooth muscle cells using freeze-fracture immunocytochemistry. We detected caveolin-1 in endoplasmic leaflets of ER membranes but never in cytoplasmic leaflets. Caveolin-1 was also present in lipid droplet cores. These findings are incompatible with the current hypothesis of lipid droplet biogenesis. We suggest that the inherent high affinity of caveolin-1 for neutral lipids causes caveolin-1 molecules to be extracted from the endoplasmic leaflets of ER membranes and to be transferred into the droplet core by inundating lipids during droplet formation.


Asunto(s)
Caveolinas/análisis , Retículo Endoplásmico/química , Membranas Intracelulares/química , Lípidos de la Membrana/química , Aorta , Transporte Biológico , Caveolina 1 , Células Cultivadas/metabolismo , Retículo Endoplásmico/ultraestructura , Técnica de Fractura por Congelación , Humanos , Inmunohistoquímica , Membranas Intracelulares/ultraestructura , Modelos Biológicos , Miocitos del Músculo Liso/metabolismo , Técnicas de Réplica
9.
FASEB J ; 17(13): 1940-2, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12923065

RESUMEN

Caveolin-1, a major protein of cell surface invaginations called caveolae, is currently believed to cycle between the plasma membrane and intracellular compartments via the endocytotic pathway, at least for part of its itinerary. We studied the distribution of caveolin-1 in cell membranes, using ultrathin cryosections and freeze-fracture immunolabeling and found this protein not only in the cytoplasmic leaflet of the plasma membrane, but also in the exoplasmic leaflet of all intracellular membranes. This sidedness implies that caveolin-1 switches from one membrane leaflet to the other somewhere on its way through the cell and rules out the classic mechanism of endocytotic membrane budding and fusion for caveolin-1 intracellular trafficking. Underlying the sidedness of caveolin-1 may be a fundamental, hitherto unrecognized, mechanism by which proteins transit membranes.


Asunto(s)
Caveolinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Animales , Caveolina 1 , Caveolinas/análisis , Membrana Celular/química , Membrana Celular/ultraestructura , Colesterol/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/ultraestructura , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA