Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Dermatol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223106

RESUMEN

BACKGROUND: Allergen-carrying virus-like particles are effective and safe means of allergen immunotherapy (AIT) in rodent models. OBJECTIVE: To study the development of allergen-blocking immunoglobulin (Ig)G in dogs injected with Der f 2-carrying enveloped plant-based bioparticles (eBPs). MATERIALS AND METHODS: Laboratory beagle dogs were injected intradermally (ID) or subcutaneously (SC) with Der f 2-eBP three times at 2-week intervals. A basophil mediator release assay was used to compare the reactivity of Der f 2-eBPs to that of recombinant Der f 2. Allergen-specific IgG serum levels were determined by immunoblotting and ELISA. The allergen-blocking potential of postvaccination IgG was assessed by Pet Allergy Xplorer (PAX) macroarray and basophil mediator release inhibition assays. RESULTS: The amount of Der f 2 eBPs needed to induce basophil activation was 1000-fold higher than that of the soluble natural allergen. In both immunisation groups, eBP injections caused no adverse events and induced Der f 2-specific IgG, first detected on Day (D)14 and peaking on D41. The co-incubation of sera with a Der f 2-IgE-rich canine serum pool resulted in a mean PAX inhibition of 70% (ID) to 80% (SC) on D41. For both groups, the inhibition of basophil mediator release reached 75% on D28 and D41. The percentage inhibition of PAX and mediator release correlated significantly with Der f 2 IgG levels. CONCLUSION AND CLINICAL RELEVANCE: Intradermal and subcutaneous injections of Der f 2-eBPs were safe and increased Der f 2-specific IgG. The clinical benefit of immunotherapy will be evaluated in future trials enrolling atopic dogs allergic to house dust mites.

2.
Nat Commun ; 14(1): 8051, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052872

RESUMEN

Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP. Following intratracheal aerosol delivery of Cy5-labeled peptide in rhesus macaques, we confirm delivery throughout the respiratory tract. Subsequently, we target CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieve editing efficiencies of up-to 5.3% in rhesus airway epithelia. Moreover, we document persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restores anion channel function in cultured human airway epithelia. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células Epiteliales , Animales , Humanos , Ratones , Macaca mulatta/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Ribonucleoproteínas/metabolismo , Péptidos/genética , Sistemas CRISPR-Cas
3.
World Allergy Organ J ; 16(11): 100839, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020282

RESUMEN

Introduction: As the only market-authorized allergen immunotherapy (AIT) for peanut allergy is accompanied by a high risk of side effects and mainly induces robust desensitization without sustained efficacy, novel treatment options are required. Peanut-specific plant-derived eBioparticles (eBPs) surface expressing Ara h 2 at high density have been shown to be very hypoallergenic. Here, we assessed the dendritic cell (DC)-activating and T cell polarization capacity of these peanut-specific eBPs. Methods: Route and kinetics of eBP uptake were studied by (imaging) flow cytometry using monocyte-derived DCs incubated with fluorescently-labelled Ara h 2 eBPs or natural Ara h 2 (nAra h 2) in the presence or absence of inhibitors that block pathways involved in macropinocytosis, phagocytosis, and/or receptor-mediated uptake. DC activation was monitored by flow cytometry (maturation marker expression) and ELISA (cytokine production). T cell polarization was assessed by co-culturing DCs exposed to Ara h 2 eBPs or nAra h 2 with naïve CD4+ T cells, followed by flow cytometry assessment of intracellular IFNγ+ (Th1) and IL-13+ (Th2), and CD25+CD127-Foxp3+ regulatory T cells (Tregs). The suppressive activity of Tregs was tested using a suppressor assay. Results: Ara h 2 eBPs were taken up by DCs through actin-dependent pathways. They activated DCs demonstrated by an induced expression of CD83 and CD86, and production of TNFα, IL-6, and IL-10. eBP-treated DCs polarized naïve CD4+ T cells towards Th1 cells, while reducing Th2 cell development. Furthermore, eBP-treated DCs induced reduced the frequency of Foxp3+ Tregs but did not significantly affect T cell IL-10 production or T cells with suppressive capacity. In contrast, DC activation and Th1 cell polarization were not observed for nAra h 2. Conclusion: Ara h 2 eBPs activate DCs that subsequently promote Th1 cell polarization and reduce Th2 cell polarization. These characteristics mark Ara h 2 eBPs as a promising novel candidate for peanut AIT.

4.
Res Sq ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824928

RESUMEN

Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, to improve base editor RNP delivery, we optimized S10 to derive the S315 peptide. Following intratracheal aerosol of Cy5-labeled peptide cargo in rhesus macaques, we confirmed delivery throughout the respiratory tract. Subsequently, we targeted CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieved editing efficiencies of up to 5.3% in rhesus airway epithelia. Moreover, we documented persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restored anion channel function in cultured human airway epithelial cells. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.

5.
PLoS One ; 13(4): e0195558, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29617431

RESUMEN

Delivery of recombinant proteins to therapeutic cells is limited by a lack of efficient methods. This hinders the use of transcription factors or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleoproteins to develop cell therapies. Here, we report a soluble peptide designed for the direct delivery of proteins to mammalian cells including human stem cells, hard-to-modify primary natural killer (NK) cells, and cancer cell models. This peptide is composed of a 6x histidine-rich domain fused to the endosomolytic peptide CM18 and the cell penetrating peptide PTD4. A less than two-minute co-incubation of 6His-CM18-PTD4 peptide with spCas9 and/or asCpf1 CRISPR ribonucleoproteins achieves robust gene editing. The same procedure, co-incubating with the transcription factor HoxB4, achieves transcriptional regulation. The broad applicability and flexibility of this DNA- and chemical-free method across different cell types, particularly hard-to-transfect cells, opens the way for a direct use of proteins for biomedical research and cell therapy manufacturing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Factores de Transcripción/administración & dosificación , Animales , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Cricetulus , Citosol/metabolismo , Endocitosis , Escherichia coli , Humanos , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Ratas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
6.
Mol Pharmacol ; 91(3): 167-177, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28049773

RESUMEN

Alternative splicing at the human glucuronosyltransferase 1 gene locus (UGT1) produces alternate isoforms UGT1A_i2s that control glucuronidation activity through protein-protein interactions. Here, we hypothesized that UGT1A_i2s function as a complex protein network connecting other metabolic pathways with an influence on cancer cell metabolism. This is based on a pathway enrichment analysis of proteomic data that identified several high-confidence candidate interaction proteins of UGT1A_i2 proteins in human tissues-namely, the rate-limiting enzyme of glycolysis pyruvate kinase (PKM), which plays a critical role in cancer cell metabolism and tumor growth. The partnership of UGT1A_i2 and PKM2 was confirmed by coimmunoprecipitation in the HT115 colon cancer cells and was supported by a partial colocalization of these two proteins. In support of a functional role for this partnership, depletion of UGT1A_i2 proteins in HT115 cells enforced the Warburg effect, with a higher glycolytic rate at the expense of mitochondrial respiration, and led to lactate accumulation. Untargeted metabolomics further revealed a significantly altered cellular content of 58 metabolites, including many intermediates derived from the glycolysis and tricarboxylic acid cycle pathways. These metabolic changes were associated with a greater migration potential. The potential relevance of our observations is supported by the down-regulation of UGT1A_i2 mRNA in colon tumors compared with normal tissues. Alternate UGT1A variants may thus be part of the expanding compendium of metabolic pathways involved in cancer biology directly contributing to the oncogenic phenotype of colon cancer cells. Findings uncover new aspects of UGT functions diverging from their transferase activity.


Asunto(s)
Empalme Alternativo/genética , Neoplasias del Colon/enzimología , Neoplasias del Colon/metabolismo , Glucuronosiltransferasa/genética , Proteínas Portadoras/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Respiración de la Célula , Supervivencia Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Glucólisis , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Ácido Láctico/metabolismo , Proteínas de la Membrana/metabolismo , Metabolómica , Mitocondrias/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
7.
Mol Pharmacol ; 85(1): 29-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24141015

RESUMEN

Transcripts of the UGT1A gene, encoding half of human UDP-glucuronosyltransferase (UGT) enzymes, undergo alternative splicing, resulting in active enzymes named isoforms 1 (i1s) and novel truncated isoforms 2 (i2s). Here, we investigated the effects of depleting endogenous i2 on drug response and attempted to unveil any additional biologic role(s) for the truncated novel UGT proteins. We used an integrated systems biology approach that combines RNA interference with unbiased global genomic and proteomic screens, and used HT115 colorectal cancer cells as a model. Consistent with previous evidence suggesting that i2s negatively regulate i1s through protein-protein interactions, i2-depleted cells were less sensitive to drug-induced cell death (IC50 of 0.45 ± 0.05 µM versus 0.22 ± 0.03 µM; P = 0.006), demonstrating that modulation of i2 levels meaningfully impacts drug bioavailability and cellular response. We also observed reduced production of reactive oxygen species by 30% (P < 0.05), and an enhanced expression (>1.2-fold; P < 0.05) of several proteins, such as hemoglobin α genes and superoxide dismutase 1, that have network functions associated with antioxidant properties. Interaction proteomics analysis of endogenous proteins from the cellular model, mainly in human intestine but also in kidney tissues, further uncovered interactions between i2s (but not i1s) and the antioxidant enzymes catalase and peroxiredoxin 1, which may influence antioxidant potential through sequestration of these novel partners. Our findings demonstrate for the first time dual roles for i2s in the cellular defense system as endogenous regulators of drug response as well as in oxidative stress.


Asunto(s)
Empalme Alternativo , Glucuronosiltransferasa/metabolismo , Antineoplásicos/farmacología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Catalasa/genética , Catalasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucuronosiltransferasa/genética , Humanos , Irinotecán , Isoenzimas/genética , Isoenzimas/metabolismo , Estrés Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
8.
Drug Metab Dispos ; 41(4): 694-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23360619

RESUMEN

Alternative splicing (AS) is one of the most significant components of the functional complexity of human UDP-glucuronosyltransferase enzymes (UGTs), particularly for the UGT1A gene, which represents one of the best examples of a drug-metabolizing gene regulated by AS. Shorter UGT1A isoforms [isoform 2 (i2)] are deficient in glucuronic acid transferase activity but function as negative regulators of enzyme activity through protein-protein interaction. Their abundance, relative to active UGT1A enzymes, is expected to be a determinant of the global transferase activity of cells and tissues. Here we tested whether i2-mediated inhibition increases with greater abundance of the i2 protein relative to the isoform 1 (i1) enzyme, using the extrahepatic UGT1A7 as a model and a series of 23 human embryonic kidney 293 clonal cell lines expressing variable contents of i1 and i2 proteins. Upon normalization for i1, a significant reduction of 7-ethyl-10-hydroxycamptothecin glucuronide formation was observed for i1+i2 clones (mean of 53%) compared with the reference i1 cell line. In these clones, the i2 protein content varied greatly (38-263% relative to i1) and revealed two groups: 17 clones with i2 < i1 (60% ± 3%) and 6 clones with i2 ≥ i1 (153% ± 24%). The inhibition induced by i2 was more substantial for clones displaying i2 ≥ i1 (74.5%; P = 0.001) compared with those with i2 < i1 (45.5%). Coimmunoprecipitation supports a more substantial i1-i2 complex formation when i2 exceeds i1. We conclude that the relative abundance of regulatory i2 proteins has the potential to drastically alter the local drug metabolism in the cells, particularly when i2 surpasses the protein content of i1.


Asunto(s)
Empalme Alternativo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Glucurónidos/metabolismo , Glucuronosiltransferasa/análisis , Células HEK293 , Humanos , Isoenzimas/análisis , Isoenzimas/genética , Isoenzimas/metabolismo
9.
Pharmacogenet Genomics ; 21(10): 631-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21881541

RESUMEN

OBJECTIVE: UGT2B7 is a key member of the UDP-glucuronosyltransferase (UGT) family that participates in glucuronidation of endogenous compounds and pharmaceuticals. Much evidence suggests a large interindividual variability of UGT2B7-mediated glucuronidation, which is still unexplained by polymorphisms. We hypothesized that alternative splicing may be responsible for the variability in the UGT2B7 function. METHODS: We carried out a comprehensive scan for additional exons at this locus and discovered multiple alternative splicing events. We then determined transcript expression profiles across a large variety of human tissues and assessed some of these variants for their glucuronidation activity in human cells. RESULTS: In-depth analysis of the UGT2B7 gene structure led to the discovery of six novel exons. Kidney and liver samples presented the greatest enrichment of tissue-specific splicing, with 21 new UGT2B7 transcripts isolated. Furthermore, transcription from the proximal promoter (exon 1), associated with the active UGT2B7 mRNA isoform 1 (UGT2B7_v1), is most commonly observed in the gastrointestinal tract, whereas a distal promoter (exon 1a) induces the exclusion of the canonical exon 1 and is active in hormone-related tissues. We also showed that novel transcripts with alternative 3' ends could be translated into proteins lacking glucuronosyltransferase activity in human cells but acting as negative regulators on transferase activity when coexpressed with the active UGT2B7 protein. CONCLUSION: Our findings point toward a significant variability in structure, abundance, and tissue-specific UGT2B7 transcriptome, in addition to novel functions for UGT2B7-derived proteins, all of which may ensure the production of tissue-specific proteomes and functions.


Asunto(s)
Empalme Alternativo/genética , Glucuronosiltransferasa/genética , ARN Mensajero/genética , Exones/genética , Perfilación de la Expresión Génica , Humanos , Isoenzimas/genética , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Precursores del ARN/genética , Distribución Tisular/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA