Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39082696

RESUMEN

CONTEXT: The regulation of pubertal timing and reproductive axis maturation is influenced by a myriad of physiologic and environmental inputs yet remains incompletely understood. OBJECTIVE: To contrast differences in bile acid isoform profiles across defined stages of reproductive maturity in humans and a rat model of puberty and to characterize the role of bile acid signaling via hypothalamic expression of bile acid receptor populations in the rodent model. METHODS: Secondary analysis and pilot studies of clinical cohorts, rodent models, ex vivo analyses of rodent hypothalamic tissues. Bile acid concentrations is the main outcome measure. RESULTS: Lower circulatory conjugated:deconjugated bile acid concentrations and higher total secondary bile acids were observed in postmenarcheal vs pre-/early pubertal adolescents, with similar shifts observed in infantile (postnatal day [PN]14) vs early juvenile (PN21) rats alongside increased tgr5 receptor mRNA expression within the mediobasal hypothalamus of female rats. 16S rRNA gene sequencing of the rodent gut microbiome across postnatal life revealed changes in the gut microbial composition predicted to have bile salt hydrolase activity, which was observed in parallel with the increased deconjugated and increased concentrations of secondary bile acids. We show that TGR5-stimulated GnRH release from hypothalamic explants is mediated through kisspeptin receptors and that early overexpression of human-TGR5 within the arcuate nucleus accelerates pubertal onset in female rats. CONCLUSION: Bile acid isoform shifts along stages of reproductive maturation are conserved across rodents and humans, with preclinical models providing mechanistic insight for the neuroendocrine-hepatic-gut microbiome axis as a potential moderator of pubertal timing in females.


Asunto(s)
Ácidos y Sales Biliares , Hipotálamo , Receptores Acoplados a Proteínas G , Maduración Sexual , Animales , Femenino , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos y Sales Biliares/metabolismo , Maduración Sexual/fisiología , Ratas , Humanos , Adolescente , Niño , Ratas Sprague-Dawley , Microbioma Gastrointestinal/fisiología , Pubertad/fisiología , Pubertad/metabolismo , Adulto Joven , Adulto
2.
Br J Nutr ; 122(11): 1221-1229, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31782377

RESUMEN

The major facilitator superfamily domain 2a protein was identified recently as a lysophosphatidylcholine (LPC) symporter with high affinity for LPC species enriched with DHA (LPC-DHA). To test the hypothesis that reproductive state and choline intake influence plasma LPC-DHA, we performed a post hoc analysis of samples available through 10 weeks of a previously conducted feeding study, which provided two doses of choline (480 and 930 mg/d) to non-pregnant (n 21), third-trimester pregnant (n 26), and lactating (n 24) women; all participants consumed 200 mg of supplemental DHA and 22 % of their daily choline intake as 2H-labelled choline. The effects of reproductive state and choline intake on total LPC-DHA (expressed as a percentage of LPC) and plasma enrichments of labelled LPC and LPC-DHA were assessed using mixed and generalised linear models. Reproductive state interacted with time (P = 0·001) to influence total LPC-DHA, which significantly increased by week 10 in non-pregnant women, but not in pregnant or lactating women. Contrary to total LPC-DHA, patterns of labelled LPC-DHA enrichments were discordant between pregnant and lactating women (P < 0·05), suggestive of unique, reproductive state-specific mechanisms that result in reduced production and/or enhanced clearance of LPC-DHA during pregnancy and lactation. Regardless of the reproductive state, women consuming 930 v. 480 mg choline per d exhibited no change in total LPC-DHA but higher d3-LPC-DHA (P = 0·02), indicating that higher choline intakes favour the production of LPC-DHA from the phosphatidylethanolamine N-methyltransferase pathway of phosphatidylcholine biosynthesis. Our results warrant further investigation into the effect of reproductive state and dietary choline on LPC-DHA dynamics and its contribution to DHA status.


Asunto(s)
Colina/administración & dosificación , Ácidos Docosahexaenoicos/sangre , Fosfatidilcolinas/sangre , Reproducción/fisiología , Adulto , Deuterio , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Femenino , Genotipo , Humanos , Lactancia/sangre , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Embarazo , Tercer Trimestre del Embarazo
3.
J Nutr Biochem ; 72: 108210, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31473512

RESUMEN

Despite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans. Healthy third-trimester pregnant women (n=26) consumed either 480 or 930 mg choline/day as part of a 12-week controlled feeding study. Wild-type NSA and Dlx3 heterozygous (Dlx3+/-) mice, which display placental insufficiency, consumed a 1×, 2× or 4× choline diet and were sacrificed at gestational days 15.5 and 18.5. Serum vitamin B-12, methylmalonic acid (MMA) and homocysteine were measured in all samples; holotranscobalamin (in humans) and hepatic vitamin B-12 (in mice) were also measured. The 2× choline supplementation for 12 weeks in pregnant women yielded higher serum concentrations of holotranscobalamin, the bioactive form of vitamin B-12 (~24%, P=.01). Women with genetic variants in choline dehydrogenase (CHDH) and betaine-homocysteine S-methyltransferase (BHMT) had higher serum MMA concentrations (~31%, P=.03) and lower serum holotranscobalamin concentrations (~34%, P=.03), respectively. The 4× choline dose decreased serum homocysteine concentrations in both NSA and Dlx3+/- mice (~36% and~43% respectively, P≤.015). In conclusion, differences in choline supply due to supplementation or genetic variation modulate vitamin B-12 status during pregnancy, supporting a functional relationship between these nutrients.


Asunto(s)
Colina/farmacología , Fenómenos Fisiologicos Nutricionales Maternos , Vitamina B 12/sangre , Adulto , Animales , Betaína-Homocisteína S-Metiltransferasa/genética , Colina-Deshidrogenasa/genética , Suplementos Dietéticos , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Homocisteína/sangre , Humanos , Ácido Metilmalónico/sangre , Ratones Mutantes , Polimorfismo de Nucleótido Simple , Embarazo , Tercer Trimestre del Embarazo , Factores de Transcripción/genética , Adulto Joven
4.
Sci Rep ; 9(1): 9641, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270345

RESUMEN

Extracellular-signal-regulated kinases (ERK) 1 and 2 regulate many aspects of the hypothalamic-pituitary-gonadal axis. We sought to understand the role of ERK1/2 signaling in cells expressing a Cre allele regulated by the endogenous GnRHR promoter (GRIC-ERKdko). Adult female GRIC-ERKdko mice were hypogonadotropic and anovulatory. Gonadotropin administration and mating led to pregnancy in one-third of the ERKdko females. Litters from ERKdko females and pup weights were reduced coincident with delayed parturition and 100% neonatal mortality. Based on this, we examined Cre expression in implantation sites as a potential mechanism. GnRHR mRNA levels at e10.5 and e12.5 were comparable to pituitary levels from adult female mice at proestrus and GnRHR mRNA in decidua was enriched compared to whole implantation site. In vivo studies confirmed recombination in decidua, and GRIC-ERKdko placentas showed reduced ERK2 expression. Histopathology revealed abnormalities in placental architecture in the GRIC-ERKdko animals. Regions of apoptosis at the decidual/uterine interface at e18.5 were observed in control animals but apoptotic tone in these regions was reduced in ERKdko animals. These studies support a potential model of ERK-dependent signaling within the implantation site leading to loss of placental architecture and mis-regulation of apoptotic events at parturition occurring coincident with prolonged gestation and neonatal mortality.


Asunto(s)
Retardo del Crecimiento Fetal/patología , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Parto , Placenta/patología , Placentación , Animales , Femenino , Retardo del Crecimiento Fetal/etiología , Ratones , Ratones Noqueados , Embarazo
5.
Nutrients ; 11(2)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759768

RESUMEN

Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/- mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/- mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/- pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p < 0.1) placental labyrinth size at E10.5 and decrease (p < 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p < 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfα (at E12.5) and Nfκb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficiency.


Asunto(s)
Apoptosis/efectos de los fármacos , Colina/farmacología , Suplementos Dietéticos , Inflamación/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Insuficiencia Placentaria , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biomarcadores , Colina/administración & dosificación , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Neovascularización Fisiológica/fisiología , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
6.
Nutrients ; 10(4)2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29597262

RESUMEN

The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.


Asunto(s)
Colina/administración & dosificación , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Placenta/metabolismo , Placentación , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Secuencia de Bases , Femenino , Genotipo , Masculino , Ratones , MicroARNs , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales
7.
Endocrinology ; 159(3): 1264-1276, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300908

RESUMEN

Extracellular signal-regulated kinase (ERK) signaling regulates hormone action in the reproductive axis, but specific mechanisms have yet to be completely elucidated. In the current study, ERK1 null and ERK2 floxed mice were combined with a gonadotropin-releasing hormone receptor (GnRHR)-internal ribosomal entry site-Cre (GRIC) driver. Female ERK double-knockout (ERKdko) animals were hypogonadotropic, resulting in anovulation and complete infertility. Transcript levels of four gonadotrope-specific genes (GnRHR and the three gonadotropin subunits) were reduced in pituitaries at estrus in ERKdko females, and the postcastration response to endogenous GnRH hyperstimulation was blunted. As females aged, they exhibited abnormal ovarian histology, as well as increased body weight. ERKdko males were initially less affected, showing moderate subfertility, up to 6 months of age. Male ERKdko mice also displayed a blunted response to endogenous GnRH following castration. By 12 months of age, ERKdko males had reduced testicular weights and sperm production. By 18 months of age, the ERKdko males displayed reduced testis and seminal vesicle weights, marked seminiferous tubule degeneration, and a 77% reduction in sperm production relative to controls. As the GRIC is also active in the male germ line, we examined the specific role of ERK loss in the testes using the stimulated by retinoic acid 8 (Stra8)-Cre driver. Whereas ERK loss in GRIC and Stra8 males resulted in comparable losses in sperm production, seminiferous tubule histological degeneration was only observed in the GRIC-ERKdko animals. Our data suggest that loss of ERK signaling and hypogonadotropism within the reproductive axis impacts fertility and gonadal aging.


Asunto(s)
Gonadotrofos/química , Sistema de Señalización de MAP Quinasas/fisiología , Reproducción/fisiología , Factores de Edad , Animales , Anovulación/etiología , Estrenos , Femenino , Fertilidad/fisiología , Genotipo , Gonadotrofos/fisiología , Gonadotropinas Hipofisarias/genética , Hipogonadismo/etiología , Infertilidad/etiología , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Ovario/patología , Ovario/fisiopatología , ARN Mensajero/análisis , Receptores LHRH/genética , Factores Sexuales , Ácidos Sulfónicos , Testículo/patología , Testículo/fisiopatología
8.
J Nutr ; 147(11): 2083-2092, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28931587

RESUMEN

Background: Fetal growth is dependent on placental nutrient supply, which is influenced by placental perfusion and transporter abundance. Previous research indicates that adequate choline nutrition during pregnancy improves placental vascular development, supporting the hypothesis that choline may affect placental nutrient transport.Objective: The present study sought to determine the impact of maternal choline supplementation (MCS) on placental nutrient transporter abundance and nutrient metabolism during late gestation.Methods: Female non-Swiss albino mice were randomly assigned to the 1×, 2×, or 4× choline diet (1.4, 2.8, and 5.6 g choline chloride/kg diet, respectively) 5 d before mating (n = 16 dams/group). The placentas and fetuses were harvested on gestational day (E) 15.5 and E18.5. The placental abundance of macronutrient, choline, and acetylcholine transporters and glycogen metabolic enzymes, and the placental concentration of glycogen were quantified. Choline metabolites and docosahexaenoic acid (DHA) concentrations were measured in the placentas and/or fetal brains. Data were stratified by gestational day and fetal sex and were analyzed by using mixed linear models.Results: At E15.5, MCS downregulated the placental transcript and protein abundance of glucose transporter 1 (GLUT1) (-40% to -73%, P < 0.05) and the placental transcript abundance of glycogen-synthesizing enzymes (-24% to -50%, P ≤ 0.05). At E18.5, MCS upregulated GLUT3 protein abundance (+55%, P = 0.016) and the transcript abundance of glycogen-synthesizing enzymes only in the female placentas (+36% to +60%, P < 0.05), resulting in a doubling (P = 0.01) of the glycogen concentration. A higher placental transcript abundance of the transporters for DHA, choline, and acetylcholine was also detected in response to MCS, consequently altering their concentrations in the placentas or fetal brains (P ≤ 0.05).Conclusions: These data suggest that MCS modulates placental nutrient transporter abundance and nutrient metabolism in late gestation of mouse pregnancy, with subsequent effects on nutrient supply for the developing fetus.


Asunto(s)
Colina/farmacología , Placenta/efectos de los fármacos , Placentación/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Ácidos Docosahexaenoicos/análisis , Femenino , Desarrollo Fetal , Regulación de la Expresión Génica , Edad Gestacional , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Glucógeno/análisis , Masculino , Ratones , Placenta/metabolismo , Embarazo
9.
Nutrients ; 9(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28718809

RESUMEN

Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.


Asunto(s)
Colina/administración & dosificación , Suplementos Dietéticos , Insuficiencia Placentaria/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Desarrollo Fetal/efectos de los fármacos , Genotipo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Noqueados , Placenta/efectos de los fármacos , Placenta/metabolismo , Placentación/efectos de los fármacos , Embarazo , Resultado del Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Placenta ; 53: 57-65, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28487022

RESUMEN

INTRODUCTION: Normal placental vascular development is influenced by inflammatory, angiogenic and apoptotic processes, which may be modulated by choline through its role in membrane biosynthesis, cellular signaling and gene expression regulation. The current study examined the effect of maternal choline supplementation (MCS) on placental inflammatory, angiogenic and apoptotic processes during murine pregnancy. METHOD: Pregnant dams were randomized to receive 1, 2 or 4 times (X) the normal choline content of rodent diets, and tissues were harvested on embryonic day (E) 10.5, 12.5, 15.5 or 18.5 for gene expression, protein abundance and immunohistochemical analyses. RESULTS: The choline-induced changes in the inflammatory and angiogenic markers were a function of fetal sex. Specifically, 4X (versus 1X) choline reduced the transcript (P ≤ 0.05) and protein (P ≤ 0.06) expression of TNF-a and IL-1ß in the male placentas at E10.5 and E18.5, respectively. In the female placentas, 4X (versus 1X) choline modulated the transcript expression of Il1b in a biphasic pattern with reduced Il1b at E12.5 (P = 0.045) and E18.5 (P = 0.067) but increased Il1b at E15.5 (P = 0.031). MCS also induced an upregulation of Vegfa expression in the female placentas at E15.5 (P = 0.034; 4X versus 2X) and E18.5 (P = 0.026; 4X versus 1X). MCS decreased (P = 0.011; 4X versus 1X) placental apoptosis at E10.5. Additionally, the luminal area of the maternal spiral arteries was larger (P ≤ 0.05; 4X versus 1X) in response to extra choline throughout gestation. DISCUSSION: MCS during murine pregnancy has fetal sex-specific effects on placental inflammation and angiogenesis, with possible consequences on placental vascular development.


Asunto(s)
Apoptosis/efectos de los fármacos , Colina/administración & dosificación , Lipotrópicos/administración & dosificación , Neovascularización Fisiológica/efectos de los fármacos , Placenta/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Colina/farmacocinética , Citocinas/metabolismo , Suplementos Dietéticos , Evaluación Preclínica de Medicamentos , Endoglina/metabolismo , Femenino , Lipotrópicos/farmacocinética , Hígado/metabolismo , Masculino , Ratones , Placenta/irrigación sanguínea , Placenta/inmunología , Placenta/metabolismo , Embarazo , Distribución Aleatoria , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Sci Rep ; 7(1): 2009, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515447

RESUMEN

The placental transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) have been shown to coordinate the specific regulation of PGF in human trophoblast cell lines. While both factors independently have a positive effect on PGF gene expression, when combined, DLX3 acts as an antagonist to GCM. Despite this understanding, potential mechanisms accounting for this regulatory interaction remain unexplored. We identify physical and functional interactions between specific domains of DLX3 and GCM1 in human trophoblast-derived cells by performing immunoprecipitation and mammalian one hybrid assays. Studies revealed that DLX3 binding reduced the transcriptional activity of GCM1, providing a mechanistic explanation of their functional antagonism in regulating PGF promoter activity. The DLX3 homeodomain (HD) was essential for DLX3-GCM1 interaction, and that the HD together with the DLX3 amino- or carboxyl-terminal domains was required for maximal inhibition of GCM1. Interestingly, a naturally occurring DLX3 mutant that disrupts the carboxyl-terminal domain leading to tricho-dento-osseous syndrome in humans displayed activities indistinguishable from wild type DLX3 in this system. Collectively, our studies demonstrate that DLX3 physically interacts with GCM1 and inhibits its transactivation activity, suggesting that DLX3 and GCM1 may form a complex to functionally regulate placental cell function through modulation of target gene expression.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Trofoblastos/metabolismo , Línea Celular , Proteínas de Unión al ADN , Proteínas de Homeodominio/genética , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/genética , Activación Transcripcional
12.
Cell Tissue Res ; 369(3): 567-578, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28451751

RESUMEN

The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues.


Asunto(s)
Guanilato Ciclasa/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Péptido Natriurético Tipo-C/farmacología , Somatotrofos/metabolismo , Animales , Línea Celular , GMP Cíclico/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Receptores Acoplados a la Guanilato-Ciclasa/metabolismo , Somatotrofos/efectos de los fármacos
13.
J Cell Physiol ; 232(10): 2900-2914, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27996093

RESUMEN

Placental growth factor (PGF) is abundantly expressed by trophoblast cells within human placentae and is important for trophoblast development and placental vascularization. Circulating maternal serum levels of PGF are dynamically upregulated across gestation in normal pregnancies, whereas low circulating levels and placental production of PGF have been implicated in the pathogenesis of preeclampsia and other gestational diseases. However, the underlying molecular mechanism of regulating PGF expression in the human placenta remains poorly understood. In this study, we demonstrated that transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) were both sufficient and required for PGF expression in human trophoblast-derived cells by overexpression and knockdown approaches. Surprisingly, while DLX3 and GCM1 were both positive regulators of PGF, co-overexpression of DLX3 and GCM1 led to an antagonist effect on PGF expression on the endogenous gene and a luciferase reporter. Further, deletion and site-directed mutagenesis studies identified a novel regulatory element on the PGF promoter mediating both DLX3- and GCM1-dependent PGF expression. This regulatory region was also found to be essential for the basal activity of the PGF promoter. Finally, Chromatin-immunoprecipitation (ChIP) assays revealed colocalization of DLX3 and GCM1 at the identified regulatory region on the PGF promoter. Taken together, our studies provide important insights into intrinsic regulation of human placental PGF expression through the functional coordination of DLX3 and GCM1, and are likely to further the understanding of pathogenesis of PGF dysregulation in preeclampsia and other disease conditions.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Factor de Crecimiento Placentario/metabolismo , Factores de Transcripción/metabolismo , Trofoblastos/metabolismo , Sitios de Unión , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Mutación , Proteínas Nucleares/genética , Factor de Crecimiento Placentario/genética , Embarazo , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Factores de Transcripción/genética , Transcripción Genética , Transfección
14.
Mol Endocrinol ; 30(9): 996-1011, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27482602

RESUMEN

Fertility in mammals requires appropriate communication within the hypothalamic-pituitary-gonadal axis and the GnRH receptor (GnRHR) is a central conduit for this communication. The GnRHR resides in discrete membrane rafts and raft occupancy is required for signaling by GnRH. The present studies use immunoprecipitation and mass spectrometry to define peptides present within the raft associated with the GnRHR and flotillin-1, a key raft marker. These studies revealed peptides from the F0F1 ATP synthase complex. The catalytic subunits of the F1 domain were validated by immunoprecipitation, flow cytometry, and cell surface biotinylation studies demonstrating that this complex was present at the plasma membrane associated with the GnRHR. The F1 catalytic domain faces the extracellular space and catalyzes ATP synthesis when presented with ADP in normal mouse pituitary explants and a gonadotrope cell line. Steady-state extracellular ATP accumulation was blunted by coadministration of inhibitory factor 1, limiting inorganic phosphate in the media, and by chronic stimulation of the GnRHR. Steady-state extracellular ATP accumulation was enhanced by pharmacological inhibition of ecto-nucleoside triphosphate diphosphohydrolases. Kisspeptin administration induced coincident GnRH and ATP release from the median eminence into the hypophyseal-portal vasculature in ovariectomized sheep. Elevated levels of extracellular ATP augmented GnRH-induced secretion of LH from pituitary cells in primary culture, which was blocked in media containing low inorganic phosphate supporting the importance of extracellular ATP levels to gonadotrope cell function. These studies indicate that gonadotropes have intrinsic ability to metabolize ATP in the extracellular space and extracellular ATP may serve as a modulator of GnRH-induced LH secretion.


Asunto(s)
Gonadotrofos/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Biotinilación , Western Blotting , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Inmunoprecipitación , Espectrometría de Masas , Ratones , Receptores LHRH/genética , Receptores LHRH/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Espectrometría de Masas en Tándem
15.
Am J Clin Nutr ; 102(5): 1088-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26447159

RESUMEN

BACKGROUND: Vitamin D and iron deficiencies frequently co-exist. It is now appreciated that mechanistic interactions between iron and vitamin D metabolism may underlie these associations. OBJECTIVE: We examined interrelations between iron and vitamin D status and their regulatory hormones in pregnant adolescents, who are a group at risk of both suboptimal vitamin D and suboptimal iron status. DESIGN: The trial was a prospective longitudinal study of 158 pregnant adolescents (aged ≤18 y). Maternal circulating biomarkers of vitamin D and iron were determined at midgestation (∼25 wk) and delivery (∼40 wk). Linear regression was used to assess associations between vitamin D and iron status indicators. Bivariate and multivariate logistic regressions were used to generate the OR of anemia as a function of vitamin D status. A mediation analysis was performed to examine direct and indirect relations between vitamin D status, hemoglobin, and erythropoietin in maternal serum. RESULTS: Maternal 25-hydroxyvitamin D [25(OH)D] was positively associated with maternal hemoglobin at both midgestation and at delivery (P < 0.01 for both). After adjustment for age at enrollment and race, the odds of anemia at delivery was 8 times greater in adolescents with delivery 25(OH)D concentrations <50 nmol/L than in those with 25(OH)D concentrations ≥50 nmol/L (P <0.001). Maternal 25(OH)D was inversely associated with erythropoietin at both midgestation (P <0.05) and delivery (P <0.001). The significant relation observed between 25(OH)D and hemoglobin could be explained by a direct relation between 25(OH)D and hemoglobin and an indirect relation that was mediated by erythropoietin. CONCLUSIONS: In this group of pregnant adolescents, suboptimal vitamin D status was associated with increased risk of iron insufficiency and vice versa. These findings emphasize the need for screening for multiple nutrient deficiencies during pregnancy and greater attention to overlapping metabolic pathways when selecting prenatal supplementation regimens.


Asunto(s)
Anemia Ferropénica/epidemiología , Eritropoyetina/sangre , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Complicaciones del Embarazo/epidemiología , Deficiencia de Vitamina D/epidemiología , 25-Hidroxivitamina D 2/sangre , Adolescente , Anemia Ferropénica/complicaciones , Biomarcadores/sangre , Calcifediol/sangre , Estudios de Cohortes , Estudios Transversales , Femenino , Hemoglobinas/análisis , Humanos , Modelos Lineales , Estudios Longitudinales , New York/epidemiología , Embarazo , Complicaciones del Embarazo/sangre , Estudios Prospectivos , Riesgo , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/complicaciones
16.
J Cell Physiol ; 229(8): 1016-27, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24647919

RESUMEN

Maternal choline intake during gestation may influence placental function and fetal health outcomes. Specifically, we previously showed that supplemental choline reduced placental and maternal circulating concentrations of the anti-angiogenic factor, fms-like tyrosine kinase-1 (sFLT1), in pregnant women as well as sFLT1 production in cultured human trophoblasts. The current study aimed to quantify the effect of choline on a wider array of biomarkers related to trophoblast function and to elucidate possible mechanisms. Immortalized HTR-8/SVneo trophoblasts were cultured in different choline concentrations (8, 13, and 28 µM [control]) for 96-h and markers of angiogenesis, inflammation, apoptosis, and blood vessel formation were examined. Choline insufficiency altered the angiogenic profile, impaired in vitro angiogenesis, increased inflammation, induced apoptosis, increased oxidative stress, and yielded greater levels of protein kinase C (PKC) isoforms δ and ϵ possibly through increases in the PKC activators 1-stearoyl-2-arachidonoyl-sn-glycerol and 1-stearoyl-2-docosahexaenoyl-sn-glycerol. Notably, the addition of a PKC inhibitor normalized angiogenesis and apoptosis, and partially rescued the aberrant gene expression profile. Together these results suggest that choline inadequacy may contribute to placental dysfunction and the development of disorders related to placental insufficiency by activating PKC.


Asunto(s)
Colina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Trofoblastos/fisiología , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Proliferación Celular , Colina/administración & dosificación , Medios de Cultivo , Diglicéridos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Inflamación , Neovascularización Fisiológica/fisiología , Estrés Oxidativo , Fenoles , Fosfatidilcolinas/biosíntesis , Extractos Vegetales , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno , Trofoblastos/citología
17.
Cell Tissue Res ; 355(2): 425-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24352806

RESUMEN

The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders.


Asunto(s)
Lactotrofos/enzimología , Receptores del Factor Natriurético Atrial/metabolismo , Transducción de Señal , Animales , Factor Natriurético Atrial/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , AMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Endocitosis/efectos de los fármacos , Lactotrofos/efectos de los fármacos , Ligandos , Ratones , Péptido Natriurético Tipo-C/farmacología , Proteína Quinasa C/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Esfingolípidos/metabolismo , Hormona Liberadora de Tirotropina/metabolismo
18.
Endocrinology ; 155(2): 548-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24274984

RESUMEN

GnRH induces marked activation of the actin cytoskeleton in gonadotropes; however, the physiological consequences and cellular mechanisms responsible have yet to be fully elucidated. The current studies focus on the actin scaffolding protein cortactin. Using the gonadotrope-derived αT3-1 cell line, we found that cortactin is phosphorylated at Y(421), S(405), and S(418) in a time-dependent manner in response to the GnRH agonist buserelin (GnRHa). GnRHa induced translocation of cortactin to the leading edge of the plasma membrane where it colocalizes with actin and actin-related protein 3 (Arp3). Incubation of αT3-1 cells with the c-src inhibitor phosphoprotein phosphatase 1, blocked tyrosine phosphorylation of cortactin, reduced cortactin association with Arp3, and blunted actin reorganization in response to GnRHa. Additionally, we used RNA silencing strategies to knock down cortactin in αT3-1 cells. Knockdown of cortactin blocked the ability of αT3-1 cells to generate filopodia, lamellipodia, and membrane ruffles in response to GnRHa. We show that lamellipodia and filopodia are capable of LHß mobilization in primary pituitary culture after GnRHa treatment, and disruption of these structures using jasplakinolide reduces LH secretion. Collectively, our findings suggest that after GnRHa activation, src activity leads to tyrosine phosphorylation of cortactin, which facilitates its association with Arp3 to engage the actin cytoskeleton. The reorganization of actin by cortactin potentially underlies GnRHa-induced secretory events within αT3-1 cells.


Asunto(s)
Actinas/metabolismo , Cortactina/metabolismo , Citoesqueleto/metabolismo , Hipófisis/metabolismo , Proteína 3 Relacionada con la Actina/metabolismo , Animales , Línea Celular , Citoesqueleto/efectos de los fármacos , Hormona Liberadora de Gonadotropina/farmacología , Masculino , Ratones , Fosfoproteínas Fosfatasas/farmacología , Fosforilación/efectos de los fármacos , Hipófisis/citología , Hipófisis/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Ovinos
19.
Am J Physiol Cell Physiol ; 305(2): C173-81, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23657566

RESUMEN

Matrix metalloproteinases (MMPs) are enzymes that regulate extracellular matrix composition and contribute to cell migration. Microarray studies in mouse placenta suggested that MMP-9 transcript abundance was dependent on distal-less 3 (Dlx3), a placental-specific transcriptional regulator; however, it was not clear if this was a direct or indirect effect. Here we investigate mechanism(s) for Dlx3-dependent MMP-9 gene transcription and gelatinase activity in placental trophoblasts. Initial studies confirmed that MMP-9 activity was reduced in placental explants from Dlx3(-/-) mice and that murine MMP-9 promoter activity was induced by Dlx3 overexpression. Two binding sites within a murine MMP-9 promoter fragment bound Dlx3, and mutations in both elements reduced basal MMP-9-luciferase reporter activity and abolished regulation by Dlx3. Chromatin immunoprecipitation studies in JEG3 cells confirmed Dlx3 binding to the endogenous human MMP-9 promoter at three distinct sites and knockdown of human Dlx3 resulted in reduced endogenous MMP-9 transcripts and secreted activity. These studies provide novel evidence that Dlx3 is involved directly in the transcriptional regulation of mouse and human MMP-9 gene expression in placental trophoblasts.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Trofoblastos/citología , Animales , Western Blotting , Línea Celular Tumoral , Coriocarcinoma/metabolismo , Femenino , Gelatinasas/genética , Gelatinasas/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Noqueados , Unión Proteica , ARN Interferente Pequeño , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trofoblastos/enzimología
20.
Endocrinology ; 153(2): 700-11, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22186412

RESUMEN

Stimulation of pituitary gonadotropes by hypothalamic GnRH leads to the rapid expression of several immediate early genes that play key roles in orchestrating the response of the gonadotrope to hypothalamic stimuli. Elucidation of the signaling mechanisms that couple the GnRH receptor to this immediate early gene repertoire is critical for understanding the molecular basis of GnRH action. Here we identify signaling mechanisms that underlie regulation of the orphan nuclear receptor Nur77 as a GnRH-responsive immediate early gene in αT3-1 cells and mouse gonadotropes in culture. Using a variety of approaches, we show that GnRH-induced transcriptional upregulation of Nur77 in αT3-1 cells is dependent on calcium, protein kinase C (PKC), and ERK signaling. Transcriptional activity of Nur77 within the gonadotrope is regulated posttranslationally by GnRH signaling via PKC but not ERK activity. Surprisingly, neither activation of the ERK pathway nor the transcriptional response of Nur77 to GnRH requires the activity of c-Raf kinase. In corroboration of these results, Nur77 responsiveness to GnRH was maintained in gonadotropes from mice with pituitary-targeted ablation of c-Raf kinase. In contrast, gonadotropes from mice with pituitary deficiency of ERK signaling failed to up-regulate Nur77 after GnRH stimulation. These results further clarify the role of ERK and PKC signaling in regulation of the GnRH-induced immediate early gene program as well as GnRH-induced transcription-stimulating activity of Nur77 in the gonadotrope and shed new light on the complex functional organization of this signaling pathway in the pituitary gonadotrope.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Hipófisis/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Anticuerpos , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación de la Expresión Génica/fisiología , Hormona Liberadora de Gonadotropina/genética , Ratones , Células 3T3 NIH , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Conejos , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA