Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 238
1.
Environ Pollut ; 356: 124340, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38851377

Small plastic debris (0.1 µm-5 mm) or microplastics (MPs) have become major pollutants of aquatic ecosystems worldwide and studies suggest that MPs exposure can pose serious threats to human and wildlife health. However, to date the potential biological impacts of MPs accumulating in low amount in tissues during early life remains unclear. Here, for a more realistic assessment, we have used environmentally representative, mildly weathered, polyethylene terephthalate microplastics (PET MPs), cryomilled (1-100 µm) and fluorescently labelled. We leveraged the amphibian Xenopus laevis tadpoles as an animal model to define the biodistribution of PET MPs and determine whether exposure to PET MPs induce perturbations of antiviral immunity. Exposure to PET MPs for 1-14 days resulted in detectable PET MPs biodistribution in intestine, gills, liver, and kidney as determined by fluorescence microscopy on whole mount tissues. PET MPs accumulation rate in tissues was further evaluated via a novel in situ enzymatic digestion and subsequent filtration using silicon nanomembranes, which shows that PET MPs rapidly accumulate in tadpole intestine, liver and kidneys and persist over a week. Longer exposure (1 month) of tadpoles to relatively low concentration of PET MPs (25 µg/ml) significantly increased susceptibility to viral infection and altered innate antiviral immunity without inducing overt inflammation. This study provides evidence that exposure to MPs negatively impact immune defenses of aquatic vertebrates.

3.
Viruses ; 16(1)2024 01 20.
Article En | MEDLINE | ID: mdl-38275964

Increasing reports suggest the occurrence of co-infection between Ranaviruses such as Frog Virus 3 (FV3) and the chytrid fungus Batrachochytrium dendrobatidis (Bd) in various amphibian species. However, the potential direct interaction of these two pathogens has not been examined to date. In this study, we investigated whether FV3 can interact with Bd in vitro using qPCR, conventional microscopy, and immunofluorescent microscopy. Our results reveal the unexpected ability of FV3 to bind, promote aggregation, productively infect, and significantly increase Bd growth in vitro. To extend these results in vivo, we assessed the impact of FV3 on Xenopus tropicalis frogs previously infected with Bd. Consistent with in vitro results, FV3 exposure to previously Bd-infected X. tropicalis significantly increased Bd loads and decreased the host's survival.


Coinfection , DNA Virus Infections , Ranavirus , Animals , Batrachochytrium , Anura
4.
Bull Cancer ; 111(1): 37-50, 2024 Jan.
Article Fr | MEDLINE | ID: mdl-37679207

Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.


Drug Resistance, Neoplasm , Neoplasms , Humans , Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment
5.
Immunohorizons ; 7(10): 696-707, 2023 10 01.
Article En | MEDLINE | ID: mdl-37870488

The amphibian Xenopus laevis tadpole provides a unique comparative experimental organism for investigating the roles of innate-like T (iT) cells in tolerogenic immunity during early development. Unlike mammals and adult frogs, where conventional T cells are dominant, tadpoles rely mostly on several prominent distinct subsets of iT cells interacting with cognate nonpolymorphic MHC class I-like molecules. In the present study, to investigate whole T cell responsiveness ontogenesis in X. laevis, we determined in tadpoles and adult frogs the capacity of splenic T cells to proliferate in vivo upon infection with two different pathogens, ranavirus FV3 and Mycobacterium marinum, as well as in vitro upon PHA stimulation using the thymidine analogous 5-ethynyl-2'-deoxyuridine and flow cytometry. We also analyzed by RT-quantitative PCR T cell responsiveness upon PHA stimulation. In vivo tadpole splenic T cells showed limited capacity to proliferate, whereas the in vitro proliferation rate was higher than adult T cells. Gene markers for T cell activation and immediate-early genes induced upon TCR activation were upregulated with similar kinetics in tadpole and adult splenocytes. However, the tadpole T cell signature included a lower amplitude in the TCR signaling, which is a hallmark of mammalian memory-like T cells and iT or "preset" T cells. This study suggests that reminiscent of mammalian neonatal T cells, tadpole T cells are functionally different from their adult counterpart.


Receptors, Antigen, T-Cell , T-Lymphocytes , Animals , Xenopus laevis , Larva , Cell Differentiation , Mammals
6.
Res Integr Peer Rev ; 8(1): 9, 2023 Aug 03.
Article En | MEDLINE | ID: mdl-37533089

BACKGROUND: The practice of clinical research is strictly regulated by law. During submission and review processes, compliance of such research with the laws enforced in the country where it was conducted is not always correctly filled in by the authors or verified by the editors. Here, we report a case of a single institution for which one may find hundreds of publications with seemingly relevant ethical concerns, along with 10 months of follow-up through contacts with the editors of these articles. We thus argue for a stricter control of ethical authorization by scientific editors and we call on publishers to cooperate to this end. METHODS: We present an investigation of the ethics and legal aspects of 456 studies published by the IHU-MI (Institut Hospitalo-Universitaire Méditerranée Infection) in Marseille, France. RESULTS: We identified a wide range of issues with the stated research authorization and ethics of the published studies with respect to the Institutional Review Board and the approval presented. Among the studies investigated, 248 were conducted with the same ethics approval number, even though the subjects, samples, and countries of investigation were different. Thirty-nine (39) did not even contain a reference to the ethics approval number while they present research on human beings. We thus contacted the journals that published these articles and provide their responses to our concerns. It should be noted that, since our investigation and reporting to journals, PLOS has issued expressions of concerns for several publications we analyze here. CONCLUSION: This case presents an investigation of the veracity of ethical approval, and more than 10 months of follow-up by independent researchers. We call for stricter control and cooperation in handling of these cases, including editorial requirement to upload ethical approval documents, guidelines from COPE to address such ethical concerns, and transparent editorial policies and timelines to answer such concerns. All supplementary materials are available.

7.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220123, 2023 07 31.
Article En | MEDLINE | ID: mdl-37305914

Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Biological Evolution , Immune System , Animals , Metamorphosis, Biological , Xenopus laevis , Mammals
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220117, 2023 07 31.
Article En | MEDLINE | ID: mdl-37305915

Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Adaptive Immunity , Disease Resistance , Animals , Amphibians , Climate Change , Host-Pathogen Interactions
10.
Dev Comp Immunol ; 145: 104734, 2023 08.
Article En | MEDLINE | ID: mdl-37172665

Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.


Databases, Genetic , Genome-Wide Association Study , Animals , Humans , Xenopus laevis/genetics , Genome/genetics , Base Sequence
12.
Dev Comp Immunol ; 140: 104617, 2023 03.
Article En | MEDLINE | ID: mdl-36529309

Immunity is susceptible to reprogramming by environmental chemical and endocrine signals. Notably, numerous thyroid disrupting chemicals (TDCs) have the potential to perturb immune endpoints, but data are lacking on the mechanisms by which TDCs can influence the development of the immune system. T cell immunity is particularly vulnerable to modulation by TDCs during thymic education, differentiation, and selection. The following review discusses the ways in which thyroid hormones may influence T cell development, as well as emerging TDCs with potential to impact both thyroid hormone physiology and immune outcomes. To overcome the challenges of studying TDC impacts on immune toxicological endpoints, a comparative approach using the amphibian Xenopus laevis is recommended. X. laevis are ideally suited to studying TDC impacts on immunity due to the importance of thyroid hormones for metamorphosis, and the wealth of immunological models to measure immune endpoints in both tadpoles and adult frogs.


Endocrine Disruptors , Animals , Thyroid Hormones , Xenopus laevis/physiology , Cell Differentiation , Metamorphosis, Biological , Larva
13.
Bull Cancer ; 110(1): 19-31, 2023 Jan.
Article Fr | MEDLINE | ID: mdl-36529541

The Cancer Bulletin continues its tradition. At the beginning of 2023, the members of the editorial committee would like to share with you their analyses of the highlights of 2022. The objective remains to highlight what will change our practices and lead to different diagnostic or therapeutic options. Our synthesis will therefore focus on published data. They have been analyzed and placed in the more general context of the management of each type of cancer to deduce the practical consequences for our patients. This synthesis exercise will concern almost all tumor pathologies, most often on the therapeutic level, and will, however, exclude the evolution of techniques, whether they are diagnostic or used for the follow-up of our patients. The final objective is to allow you to have a thoughtful, didactic and practical reading. Our goal is to provide our readers with the rational bases that can lead to a different approach for treatments in 2023.


Medical Oncology , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/therapy
14.
Dev Comp Immunol ; 139: 104594, 2023 02.
Article En | MEDLINE | ID: mdl-36403788

Mycobacterial infections represent major concerns for aquatic and terrestrial vertebrates including humans. Although our current knowledge is mostly restricted to Mycobacterium tuberculosis and mammalian host interactions, increasing evidence suggests common features in endo- and ectothermic animals infected with non-tuberculous mycobacteria (NTMs) like those described for M. tuberculosis. Importantly, most of the pathogenic and non-pathogenic NTMs detected in amphibians from wild, farmed, and research facilities represent, in addition to the potential economic loss, a rising concern for human health. Upon mycobacterial infection in mammals, the protective immune responses involving the innate and adaptive immune systems are highly complex and therefore not fully understood. This complexity results from the versatility and resilience of mycobacteria to hostile conditions as well as from the immune cell heterogeneity arising from the distinct developmental origins according with the concept of layered immunity. Similar to the differing responses of neonates versus adults during tuberculosis development, the pathogenesis and inflammatory responses are stage-specific in Xenopus laevis during infection by the NTM M. marinum. That is, both in human fetal and neonatal development and in tadpole development, responses are characterized by hypo-responsiveness and a lower capacity to contain mycobacterial infections. Similar to a mammalian fetus and neonates, T cells and myeloid cells in Xenopus tadpoles and axolotls are different from the adult immune cells. Fetal and amphibian larval T cells, which are characterized by a lower T cell receptor (TCR) repertoire diversity, are biased toward regulatory function, and they have distinct progenitor origins from those of the adult immune cells. Some early developing T cells and likely macrophage subpopulations are conserved in adult anurans and mammals, and therefore, they likely play an important role in the host-pathogen interactions from early stages of development to adulthood. Thus, we propose the use of developing amphibians, which have the advantage of being free-living early in their development, as an alternative and complementary model to study the role of immune cell heterogeneity in host-mycobacteria interactions.


Tuberculosis , Animals , Humans , Infant, Newborn , Adult , Mammals
15.
Stem Cell Rev Rep ; 19(2): 568-572, 2023 02.
Article En | MEDLINE | ID: mdl-36287337

Recently, an article by Seneff et al. entitled "Innate immunosuppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs" was published in Food and Chemical Toxicology (FCT). Here, we describe why this article, which contains unsubstantiated claims and misunderstandings such as "billions of lives are potentially at risk" with COVID-19 mRNA vaccines, is problematic and should be retracted. We report here our request to the editor of FCT to have our rebuttal published, unfortunately rejected after three rounds of reviewing. Fighting the spread of false information requires enormous effort while receiving little or no credit for this necessary work, which often even ends up being threatened. This need for more scientific integrity is at the heart of our advocacy, and we call for large support, especially from editors and publishers, to fight more effectively against deadly disinformation.


COVID-19 , Publishing , Retraction of Publication as Topic , Humans , SARS-CoV-2/genetics
16.
Curr Res Toxicol ; 3: 100094, 2022.
Article En | MEDLINE | ID: mdl-36407672

While there is some evidence to suggest that disruption of the thyroid hormone (TH)-axis during perinatal development may weaken T cell immunity later in life, data are currently lacking on whether environmentally relevant thyroid disrupting chemicals (TDCs) can induce similar outcomes. To fill this gap in knowledge, X. laevis tadpoles were exposed to an environmentally relevant mixture of TDCs, either during early tadpole development, or immediately before and during metamorphosis, to assess T cell differentiation and anti-viral immune response against FV3 infection after metamorphosis. Extending our previous study showing a delay in metamorphosis completion, here we report that TDC exposure prior to metamorphosis reduced the frequency of surface MHC-II + splenic lymphocytes and weakened some aspects of the anti-viral immune response. TDC exposure during metamorphosis slowed post-metamorphic migration of the thymus reduced the renewal of cortical thymocytes and splenic CD8 + T cells. The results indicate that TDC exposure during perinatal development may perturb the formation of T cell immunity later in life.

18.
J Immunol ; 209(5): 960-969, 2022 09 01.
Article En | MEDLINE | ID: mdl-36130129

The fms-related tyrosine kinase 3 (Flt3) and its ligand (Flt3lg) are important regulators of hematopoiesis and dendritic cell (DC) homeostasis with unsettled coevolution. Gene synteny and deduced amino acid sequence analyses identified conserved flt3 gene orthologs across all jawed vertebrates. In contrast, flt3lg orthologs were not retrieved in ray-finned fish, and the gene locus exhibited more variability among species. Interestingly, duplicated flt3/flt3lg genes were maintained in the allotetraploid Xenopus laevis Comparison of modeled structures of X. laevis Flt3 and Flt3lg homoeologs with the related diploid Xenopus tropicalis and with humans indicated a higher conformational divergence between the homoeologous pairs than their respective counterparts. The distinctive developmental and tissue expression patterns of Flt3 and Flt3lg homoeologs in tadpoles and adult frogs suggest a subfunctionalization of these homoeologs. To characterize Flt3 cell surface expression, X. laevis-tagged rFlt3lg.S and rFlt3lg.L were produced. Both rFlt3lg.S and rFlt3lg.L bind in vitro Flt3.S and Flt3.L and can trigger Erk1/2 signaling, which is consistent with a partial overlapping function between homoeologs. In spleen, Flt3.S/L cell surface expression was detected on a fraction of B cells and a population of MHC class IIhigh/CD8+ leukocytes phenotypically similar to the recently described dual follicular/conventional DC-like XL cells. Our result suggests that 1) Flt3lg.S and Flt3lg.L are both involved in XL cell homeostasis and that 2) XL cells have hematopoietic origin. Furthermore, we detected surface expression of the macrophage/monocyte marker Csf1r.S on XL cells as in mammalian and chicken DCs, which points to a common evolutionary origin in vertebrate DCs.


Dendritic Cells , Receptor Protein-Tyrosine Kinases , Animals , Dendritic Cells/metabolism , Humans , Ligands , Mammals , Monocytes , Receptor Protein-Tyrosine Kinases/metabolism , Xenopus laevis/genetics , fms-Like Tyrosine Kinase 3/metabolism
19.
Dev Comp Immunol ; 136: 104510, 2022 11.
Article En | MEDLINE | ID: mdl-35985564

Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.


Chytridiomycota , Mycoses , Amphibians , Animals , Chytridiomycota/physiology , Immune System , Metamorphosis, Biological
20.
Open Biol ; 12(7): 220068, 2022 07.
Article En | MEDLINE | ID: mdl-35857928

The AGR2 and AGR3 genes have been shown by numerous groups to be functionally associated with adenocarcinoma progression and metastasis. In this paper, we explore the data available in databases concerning genomic and transcriptomic features of these two genes: the NCBI dbSNP database was used to explore the presence and roles of constitutional SNPs, and the NCI, Cancer Cell Line Encyclopedia (CCLE) and TCGA databases were used to explore somatic mutations and copy number variations (CNVs), as well as mRNA expression of these genes in human cancer cell lines and tumours. Relationships of AGR2/3 expression with whole-genome mRNA expression and cancer features (i.e. mutations and CNVs of oncogenes and tumour suppressor genes (TSG)) were established using the CCLE and TCGA databases. In addition, the CCLE data concerning CRISPR gene extinction screens (Achilles project) of these two genes and a panel of oncogenes and TSG were explored. We observed that no functional polymorphism or recurrent mutation could be detected in AGR2 or AGR3. The expression of these genes was positively correlated with the expression of epithelial genes and inversely correlated with that of mesenchymal genes. It was also significantly associated with several cancer features, such as TP53 or SMAD4 mutations, depending on the gene and the cancer type. In addition, the CRISPR screens revealed the absence of cell fitness modification upon gene extinction, in contrast with oncogenes (cell fitness decrease) and TSG (cell fitness increase). Overall, these explorations revealed that AGR2 and AGR3 proteins appear as common non-genetic evolutionary factors in the process of human tumorigenesis.


Adenocarcinoma , Neoplasm Proteins , Adenocarcinoma/genetics , Carrier Proteins/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Genomics , Humans , Mucoproteins/genetics , Mucoproteins/metabolism , Neoplasm Proteins/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , RNA, Messenger , Transcriptome
...