Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 140
1.
Chem Commun (Camb) ; 60(38): 5022-5025, 2024 May 07.
Article En | MEDLINE | ID: mdl-38629464

We present two novel cobalt pyridyldiimine complexes functionalized with pyrene. Initially modest in homogeneous acetonitrile solution, their electrocatalytic CO2 reduction performance significantly improves upon immobilization on MWCNTs in an aqueous carbonate buffer. The complexes exhibit outstanding stability, with CO selectivity exceeding 97%, and TON and TOF values reaching up to 104 and above 1.2 s-1, respectively.

2.
Angew Chem Int Ed Engl ; 63(15): e202400414, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38348904

Bipolar membranes (BPMs) have emerged as a promising solution for mitigating CO2 losses, salt precipitation and high maintenance costs associated with the commonly used anion-exchange membrane electrode assembly for CO2 reduction reaction (CO2RR). However, the industrial implementation of BPM-based zero-gap electrolyzer is hampered by the poor CO2RR performance, largely attributed to the local acidic environment. Here, we report a backbone engineering strategy to improve the CO2RR performance of molecular catalysts in BPM-based zero-gap electrolyzers by covalently grafting cobalt tetraaminophthalocyanine onto a positively charged polyfluorene backbone (PF-CoTAPc). PF-CoTAPc shows a high acid tolerance in BPM electrode assembly (BPMEA), achieving a high FE of 82.6 % for CO at 100 mA/cm2 and a high CO2 utilization efficiency of 87.8 %. Notably, the CO2RR selectivity, carbon utilization efficiency and long-term stability of PF-CoTAPc in BPMEA outperform reported BPM systems. We attribute the enhancement to the stable cationic shield in the double layer and suppression of proton migration, ultimately inhibiting the undesired hydrogen evolution and improving the CO2RR selectivity. Techno-economic analysis shows the least energy consumption (957 kJ/mol) for the PF-CoTAPc catalyst in BPMEA. Our findings provide a viable strategy for designing efficient CO2RR catalysts in acidic environments.

3.
ChemSusChem ; : e202301892, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38324459

Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Ni‖ (N2 S2 )]Cl2 (NiN2 S2 , N2 S2 =2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3 ]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8 h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6 h was 1079 h-1 , with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.

4.
Angew Chem Int Ed Engl ; 63(13): e202318299, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38314922

Dye-sensitized photocatalytic systems (DSPs) have been extensively investigated for solar-driven hydrogen (H2 ) evolution. However, their application in carbon dioxide (CO2 ) reduction remains limited. Furthermore, current solar-driven CO2 -to-CO DSPs typically employ rhenium complexes as catalysts. In this study, we have developed DSPs that incorporate noble metal-free components, specifically a zinc-porphyrin as photosensitizer (PS) and a cobalt-quaterpyridine as catalyst (CAT). Taking a significant stride forward, we have achieved an antenna effect for the first time in CO2 -to-CO DSPs by introducing a Bodipy as an additional chromophore to enhance light harvesting efficiency. The energy transfer from Bodipy to zinc porphyrin resulted in remarkable stability (turn over number (TON)=759 vs. CAT), and high CO evolution activity (42 mmol g-1 h-1 vs. CAT).

6.
J Am Chem Soc ; 145(46): 25195-25202, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37947126

Visible-light-driven reduction of CO2 to both CO and formate (HCOO-) was achieved in acetonitrile solutions using a homobimetallic Cu bisquaterpyridine complex. In the presence of a weak acid (water) as coreactant, the reaction rate was enhanced, and a total of ca. 766 TON (turnover number) was reached for the CO2 reduction, with 60% selectivity for formate and 28% selectivity for CO, using Ru(phen)32+ as a sensitizer and amines as sacrificial electron donors. Mechanistic studies revealed that with the help of cooperativity between two Cu centers, a bridging hydride is generated in the presence of a proton source (water) and further reacts with CO2 to give HCOO-. A second product, CO, was also produced in a parallel competitive pathway upon direct coordination of CO2 to the reduced complex. Mechanistic studies further allowed comparison of the observed reactivity to the monometallic Cu quaterpyridine complex, which only produced CO, and to the related homobimetallic Co bisquaterpyridine complex, that has been previously shown to generate formate following a mechanism not involving the formation of an intermediate hydride species.

7.
Chem Sci ; 14(44): 12774-12783, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-38020384

Among the rare bimetallic complexes known for the reduction of CO2, CoIICoII and ZnIICoII hexamine cryptates are described as efficient photocatalysts. In close relation to the active sites of natural, CO2-reducing enzymes, we recently reported the asymmetric cryptand {NSNN}m ({NSNN}m = N[(CH2)2SCH2(m-C6H4)CH2NH(CH2)2]3N) comprising distinct sulphur- and nitrogen-rich binding sites and the corresponding CuIMII (MII = CoII, NiII, CuII) complexes. To gain insight into the effect of metals in different oxidation states and sulphur-incorporation on the photocatalytic activity, we herein investigate the CuICoII complex of {NSNN}m as catalyst for the visible light-driven reduction of CO2. After 24 h irradiation with LED light of 450 nm, CuICoII-{NSNN}m shows a high efficiency for the photocatalytic CO2-to-CO conversion with 9.22 µmol corresponding to a turnover number of 2305 and a high selectivity of 98% over the competing H2 production despite working in an acetonitrile/water (4 : 1) mixture. Experiments with mononuclear counterparts and computational studies show that the high activity can be attributed to synergistic catalysis between Cu and Co. Furthermore, it was shown that an increase of the metal distance results in the loss of synergistic effects and rather single-sited Co catalysis is observed.

8.
Dalton Trans ; 52(42): 15360-15364, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37740280

Herein, we demonstrate the construction of a 1D/2D heterostructure of cobalt phthalocyanine (CoPc)-carbon nitride (C3N4) for electrochemical N2 reduction to NH3. Improved performance originates from the higher exposure of active surface sites. The electrochemical NRR performance showed an NH3 formation rate of 423.8 µg h-1 mgcat-1, a high faradaic efficiency (FE) of 33%, and stability for 20 h. This study provides a new strategy for designing a highly efficient 1D/2D electrocatalytic system for ammonia synthesis.

9.
Nat Commun ; 14(1): 3401, 2023 Jun 09.
Article En | MEDLINE | ID: mdl-37296132

While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.


Carbon Dioxide , Methanol , Spectroscopy, Fourier Transform Infrared , Adsorption , Carbon
10.
Chemistry ; 29(9): e202202361, 2023 Feb 10.
Article En | MEDLINE | ID: mdl-36330884

A pyrazole-based ligand substituted with terpyridine groups at the 3 and 5 positions has been synthesized to form the dinuclear cobalt complex 1, that electrocatalytically reduces carbon dioxide (CO2 ) to carbon monoxide (CO) in the presence of Brønsted acids in DMF. Chemical, electrochemical and UV-vis spectro-electrochemical studies under inert atmosphere indicate pairwise reduction processes of complex 1. Infrared spectro-electrochemical studies under CO2 and CO atmosphere are consistent with a reduced CO-containing dicobalt complex which results from the electroreduction of CO2 . In the presence of trifluoroethanol (TFE), electrocatalytic studies revealed single-site mechanism with up to 94 % selectivity towards CO formation when 1.47 M TFE were present, at -1.35 V vs. Saturated Calomel Electrode in DMF (0.39 V overpotential). The low faradaic efficiencies obtained (<50 %) are attributed to the generation of CO-containing species formed during the electrocatalytic process, which inhibit the reduction of CO2 .

11.
J Am Chem Soc ; 144(49): 22734-22746, 2022 12 14.
Article En | MEDLINE | ID: mdl-36468903

The electrocatalytic epoxidation of alkenes at heterogeneous catalysts using water as the sole oxygen source is a promising safe route toward the sustainable synthesis of epoxides, which are essential building blocks in organic chemistry. However, the physicochemical parameters governing the oxygen-atom transfer to the alkene and the impact of the electrolyte structure on the epoxidation reaction are yet to be understood. Here, we study the electrocatalytic epoxidation of cyclooctene at the surface of gold in hybrid organic/aqueous mixtures using acetonitrile (ACN) solvent. Gold was selected, as in ACN/water electrolytes gold oxide is formed by reactivity with water at potentials less anodic than the oxygen evolution reaction (OER). This unique property allows us to demonstrate that a sacrificial mechanism is responsible for cyclooctene epoxidation at metallic gold surfaces, proceeding through cyclooctene activation, while epoxidation at gold oxide shares similar reaction intermediates with the OER and proceeds via the activation of water. More importantly, we show that the hydrophilicity of the electrode/electrolyte interface can be tuned by changing the nature of the supporting salt cation, hence affecting the reaction selectivity. At low overpotential, hydrophilic interfaces formed using strong Lewis acid cations are found to favor gold passivation. Instead, hydrophobic interfaces created by the use of large organic cations favor the oxidation of cyclooctene and the formation of epoxide. Our study directly demonstrates how tuning the hydrophilicity of electrochemical interfaces can improve both the yield and selectivity of anodic reactions at the surface of heterogeneous catalysts.


Alkenes , Oxygen , Alkenes/chemistry , Cyclooctanes , Epoxy Compounds/chemistry , Gold , Hydrophobic and Hydrophilic Interactions , Oxygen/chemistry , Water/chemistry
12.
Chem Sci ; 13(44): 13220-13224, 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36425491

Novel energy and atom efficiency processes will be keys to develop the sustainable chemical industry of the future. Electrification could play an important role, by allowing to fine-tune energy input and using the ideal redox agent: the electron. Here we demonstrate that a commercially available Milstein ruthenium catalyst (1) can be used to promote the electrochemical oxidation of ethanol to ethyl acetate and acetate, thus demonstrating the four electron oxidation under preparative conditions. Cyclic voltammetry and DFT-calculations are used to devise a possible catalytic cycle based on a thermal chemical step generating the key hydride intermediate. Successful electrification of Milstein-type catalysts opens a pathway to use alcohols as a renewable feedstock for the generation of esters and other key building blocks in organic chemistry, thus contributing to increase energy efficiency in organic redox chemistry.

13.
Angew Chem Int Ed Engl ; 61(40): e202209899, 2022 10 04.
Article En | MEDLINE | ID: mdl-35941077

Nitrogen reduction under mild conditions (room T and atmospheric P), using a non-fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3 ], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoI N2 MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton-coupled electron transfer (PCET) conversion studies of N2 to NH3 .


Coordination Complexes , Molybdenum , Coordination Complexes/chemistry , Electrons , Molybdenum/chemistry , Nitrogen/chemistry , Protons
15.
Ann Oper Res ; : 1-26, 2022 Apr 29.
Article En | MEDLINE | ID: mdl-35506124

Industry 4.0 represents the most advanced stage of organization of industrial companies, allowing them to respond to an uncertain and changing environment, particularly as accentuated by the recent crisis resulting from COVID-19. Management innovation (MI) contributes to this process of permanent adaptation. The MI implementation phase is a critical step in MI generation that can generate many potential obstacles. This study focuses on these obstacles while considering the different activities (or subprocesses) embedded in this phase and the different actors involved in this complex process. We conducted a longitudinal case study in real time to investigate the implementation of MI internally generated by a multinational industrial company. Our results show that the obstacles encountered during the MI implementation phase may differ depending on the different activities and actors of this phase, thus leading us to question current implementation frameworks. This paper contributes by refining the theoretical model of MI generation and providing a better understanding of the obstacles that occur during the MI implementation phase. From a managerial perspective, this paper highlights key management principles to overcome the obstacles identified.

16.
Chemistry ; 28(27): e202200697, 2022 May 11.
Article En | MEDLINE | ID: mdl-35267221

A long-time challenge in aqueous CO2 electrochemical reduction is to catalyze the formation of products beyond carbon monoxide with selectivity. Formaldehyde is the simplest of these products and one of the most relevant due to its broad use in the industry. Paradoxically it is one of the less reported product. Such scarcity may be in part explained by difficult identification and quantification using conventional chromatography or proton nuclear magnetic resonance techniques. Likewise, indirect detection methods are usually not compatible with labelled studies for asserting product origin. Recently, the possible production of formaldehyde during electrochemical reduction of carbon monoxide to methanol at cobalt phthalocyanine molecular catalyst in basic media has been the object of contradictory reports. By applying an analytical procedure based on proton NMR along with labelled studies, we provide definitive evidence for HCHO formation. We have further identified the possible scenarios for methanol formation through formaldehyde and revealed that the formation of the intermediate and its subsequent reduction are taking place at the same single active site. These studies open a new perspective to improve selectivity toward formaldehyde formation and to develop a subsequent chemistry based on reacting it with nucleophiles.


Carbon Monoxide , Methanol , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Formaldehyde/chemistry , Indoles , Methanol/chemistry , Organometallic Compounds , Protons
17.
Angew Chem Int Ed Engl ; 61(11): e202116832, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-34986281

Efficient and selective photocatalytic CO2 reduction was obtained within a hybrid system that is formed in situ via a Schiff base condensation between a molecular iron quaterpyridine complex bearing an aldehyde function and carbon nitride. Irradiation (blue LED) of an CH3 CN solution containing 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH), triethylamine (TEA), Feqpy-BA (qpy-BA=4-([2,2':6',2'':6'',2'''-quaterpyridin]-4-yl)benzaldehyde) and C3 N4 resulted in CO evolution with a turnover number of 2554 and 95 % selectivity. This hybrid catalytic system unlocks covalent linkage of molecular catalysts with semiconductor photosensitizers via Schiff base reaction for high-efficiency photocatalytic reduction of CO2 , opening a pathway for diverse photocatalysis.

18.
Mol Biotechnol ; 64(3): 278-292, 2022 Mar.
Article En | MEDLINE | ID: mdl-34596870

Over-expression of the vesicular stomatitis virus glycoprotein (VSVG) in mammalian cells can induce the formation of VSVG-pseudotyped vesicles (named "gesicles") from membrane budding. Its use as a nucleic acid delivery tool is still poorly documented. Naked-plasmid DNA can be delivered in animal cells with gesicles in presence of hexadimethrine bromide (polybrene). However, little is known about gesicle manufacturing process and conditions to obtain successful nucleic acid delivery. In this study, gesicles production process using polyethylenimine (PEI)-transfected HEK293 cells was developed by defining the VSVG-plasmid concentration, the DNA:PEI mass ratio, and the time of gesicle harvest. Furthermore, parameters described in the literature relevant for nucleic acid delivery such as (i) component concentrations in assembly mixture, (ii) component addition order, (iii) incubation time, and (iv) polybrene concentration were tested by assessing the transfection capacity of the gesicles complexed with a green fluorescent protein (GFP)-coding plasmid. Interestingly, freezing/thawing cycles and storage at + 4 °C, - 20 °C, and - 80 °C did not reduce gesicles' ability to transfer plasmid DNA. Transfection efficiency of 55% and 22% was obtained for HeLa cells and for hard-to-transfect cells such as human myoblasts, respectively. For the first time, gesicles were used for delivery of a large plasmid (18-kb) with 42% of efficiency and for enhanced green fluorescent protein (eGFP) gene silencing with siRNA (up to 60%). In conclusion, gesicles represent attractive bioreagents with great potential to deliver nucleic acids in mammalian cells.


Exosomes/genetics , Membrane Glycoproteins/genetics , Nucleic Acids/pharmacology , Viral Envelope Proteins/genetics , Drug Delivery Systems , Green Fluorescent Proteins/genetics , HEK293 Cells , HeLa Cells , Hexadimethrine Bromide/chemistry , Humans , Plasmids/genetics , Transfection
19.
Chem Rec ; 21(9): 2095-2106, 2021 Sep.
Article En | MEDLINE | ID: mdl-34235842

The electron is the ultimate redox reagent to build and reshape molecular structures. Understanding and controlling the parameters underlying dissociative electron transfer (DET) reactivity and its coupling with proton transfer is crucial for combining selectivity, kinetics and energy efficiency in molecular chemistry. Reactivity understanding and mechanistic elements in DET processes are traced back and key examples of current research efforts are presented, demonstrating a large variety of applications. The involvement of DET pathways indeed encompasses a broad range of processes such as photoredox catalysis, CO2 reduction and alcohol oxidation. Interplay between these experimental examples and fundamental mechanistic study provides a powerful path to the understanding of driving force-rate relationships, which is crucial for the development of future generations of energy efficient catalytic schemes in redox organic chemistry.

20.
Chemphyschem ; 22(18): 1835-1843, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34145708

Converting CO2 into useful resources by electrocatalysis and photocatalysis is a promising strategy for recycling of the gas and electrification of industries. Numerous studies have shown that multinuclear metal catalysts have higher selectivity and catalytic activity than monometallic catalysts due to the synergistic effects between the metal sites. In this review, we summarize some of the recent progress on the electrocatalytic and photocatalytic reduction of CO2 by earth-abundant bimetallic molecular catalysts.

...