Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Curr HIV/AIDS Rep ; 21(3): 87-115, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602558

PURPOSE OF REVIEW: Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS: Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.


Cognition , HIV Infections , Humans , HIV Infections/drug therapy , HIV Infections/complications , HIV Infections/psychology , Cognition/drug effects , Cannabis/adverse effects , Cannabinoids/therapeutic use , Cannabinoids/adverse effects , Cannabinoids/pharmacology , Animals , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Marijuana Use/adverse effects
3.
Nat Neurosci ; 27(1): 90-101, 2024 Jan.
Article En | MEDLINE | ID: mdl-38177337

Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.


Anxiety , Medically Unexplained Symptoms , Mice , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Fear , Behavior, Animal/physiology
4.
Cogn Affect Behav Neurosci ; 24(2): 269-278, 2024 Apr.
Article En | MEDLINE | ID: mdl-38168850

Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.


Amphetamine , Central Nervous System Stimulants , Electroencephalography , Mice, Inbred C57BL , Motivation , Amphetamine/pharmacology , Humans , Animals , Male , Electroencephalography/drug effects , Adult , Young Adult , Double-Blind Method , Motivation/drug effects , Motivation/physiology , Female , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Mice , Alpha Rhythm/drug effects , Alpha Rhythm/physiology
5.
Psychopharmacology (Berl) ; 240(11): 2303-2315, 2023 Nov.
Article En | MEDLINE | ID: mdl-36806900

RATIONALE: Seasonal birth patterns consistently implicate winter gestation as a risk factor for several psychiatric conditions. We recently demonstrated that short-active (SA; 19:5 light:dark)-i.e., "winter-like"-photoperiod exposure across gestation and early life (E0-P28) induces psychiatrically relevant behavioral abnormalities in adult mice, including reduced immobility in the forced swim test (FST) and effortful amotivation. It is unknown, however, whether these effects were driven primarily by prenatal or postnatal mechanisms, and whether perinatal SA photoperiod would similarly reduce effort expenditure in a task relevant to everyday decision-making. OBJECTIVES AND METHODS: We first tested male and female mice exposed to either gestational (E0-P0) or postnatal (E0-P28) SA photoperiod in the FST to determine whether the previously observed alteration was driven primarily by prenatal versus postnatal photoperiod. We then assessed whether SA gestational photoperiod reduces effortful choice behavior in the cross-species effort-based decision-making task (EBDMT) and whether any such deficit could be remediated by d-amphetamine (0.1 and 0.3 mg/kg, i.p.). RESULTS: Mice exposed to prenatal, but not postnatal, SA photoperiod exhibited reduced FST immobility relative to controls and also demonstrated condition-dependently reduced preference for high-effort/high-reward versus low-effort/low-reward contingencies in the EBDMT. This effortful choice deficit was normalized by 0.1 mg/kg amphetamine. CONCLUSIONS: These data: (1) suggest a greater contribution of gestational versus postnatal light conditions to the behavioral effects of perinatal SA photoperiod; and (2) implicate altered dopamine signaling in the behavioral phenotype of the SA-born mouse and possibly in the etiology of winter gestation-associated cases of psychiatric disease.

6.
Emerg Top Life Sci ; 6(5): 529-539, 2022 12 09.
Article En | MEDLINE | ID: mdl-36408755

Cognitive dysfunction, particularly attentional impairment, is a core feature of many psychiatric disorders, yet is inadequately addressed by current treatments. Development of targeted therapeutics for the remediation of attentional deficits requires knowledge of underlying neurocircuit, cellular, and molecular mechanisms that cannot be directly assayed in the clinic. This level of detail can only be acquired by testing animals in cross-species translatable attentional paradigms, in combination with preclinical neuroscience techniques. The 5-choice continuous performance test (5C-CPT) and rodent continuous performance test (rCPT) represent the current state of the art of preclinical assessment of the most commonly studied subtype of attention: sustained attention, or vigilance. These tasks present animals with continuous streams of target stimuli to which they must respond (attention), in addition to non-target stimuli from which they must withhold responses (behavioral inhibition). The 5C-CPT and rCPT utilize the same measures as gold-standard clinical continuous performance tests and predict clinical efficacy of known pro-attentional drugs. They also engage common brain regions across species, although efforts to definitively establish neurophysiological construct validity are ongoing. The validity of these tasks as translational vigilance assessments enables their use in characterizing the neuropathology underlying attentional deficits of animal models of psychiatric disease, and in determining therapeutic potential of drugs ahead of clinical testing. Here, we briefly review the development and validation of such tests of attentional functioning, as well as the data they have generated pertaining to inattention, disinhibition, and impulsivity in psychiatric disorders.


Neuropathology , Neurosciences , Neurophysiology , Cognition
7.
Cell Rep ; 40(7): 111222, 2022 08 16.
Article En | MEDLINE | ID: mdl-35977501

Perception of threats is essential for survival. Previous findings suggest that parallel pathways independently relay innate threat signals from different sensory modalities to multiple brain areas, such as the midbrain and hypothalamus, for immediate avoidance. Yet little is known about whether and how multi-sensory innate threat cues are integrated and conveyed from each sensory modality to the amygdala, a critical brain area for threat perception and learning. Here, we report that neurons expressing calcitonin gene-related peptide (CGRP) in the parvocellular subparafascicular nucleus in the thalamus and external lateral parabrachial nucleus in the brainstem respond to multi-sensory threat cues from various sensory modalities and relay negative valence to the lateral and central amygdala, respectively. Both CGRP populations and their amygdala projections are required for multi-sensory threat perception and aversive memory formation. The identification of unified innate threat pathways may provide insights into developing therapeutic candidates for innate fear-related disorders.


Central Amygdaloid Nucleus , Parabrachial Nucleus , Calcitonin Gene-Related Peptide/metabolism , Central Amygdaloid Nucleus/metabolism , Cues , Parabrachial Nucleus/metabolism , Thalamus/metabolism
8.
Psychopharmacology (Berl) ; 239(3): 923-933, 2022 Mar.
Article En | MEDLINE | ID: mdl-35132440

The bench-to-bedside development of pro-cognitive therapeutics for psychiatric disorders has been mired by translational failures. This is, in part, due to the absence of pharmacologically sensitive cognitive biomarkers common to humans and rodents. Here, we describe a cross-species translational marker of reward processing that is sensitive to the aminergic agonist, d-amphetamine. Motivated by human electroencephalographic (EEG) findings, we recently reported that frontal midline delta-band power is an electrophysiological biomarker of reward surprise in humans and in mice. In the current series of experiments, we determined the impact of parametric doses of d-amphetamine on this reward-related EEG response from humans (n = 23) and mice (n = 28) performing a probabilistic learning task. In humans, d-amphetamine (placebo, 10 mg, 20 mg) boosted the Reward Positivity event-related potential (ERP) component as well as the spectral delta-band representations of this signal. In mice, d-amphetamine (placebo, 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg) boosted both reward and punishment ERP features, yet there was no modulation of spectral activities. In sum, the present results confirm the role of dopamine in the generation of the Reward Positivity in humans, and pave the way toward a pharmacologically valid biomarker of reward sensitivity across species.


Amphetamine , Reinforcement, Psychology , Amphetamine/pharmacology , Animals , Biomarkers , Electroencephalography , Humans , Mice , Reward
9.
Neuropsychopharmacology ; 47(5): 1029-1036, 2022 04.
Article En | MEDLINE | ID: mdl-35042948

The poor translatability between preclinical and clinical drug trials has limited pro-cognitive therapeutic development. Future pro-cognitive drug trials should use translatable cross-species cognitive tasks with biomarkers (1) relevant to specific cognitive constructs, and (2) sensitive to drug treatment. Here, we used a difficulty-modulated variant of a cross-species cognitive control task with simultaneous electroencephalography (EEG) to identify neurophysiological biomarkers sensitive to the pro-cognitive effects of dextroamphetamine (d-amp) (10 or 20 mg) in healthy adults (n = 23), in a randomized, placebo-controlled, counterbalanced, double blind, within-subject study, conducted across three test days each separated by one week. D-amp boosted d-prime, sped reaction time, and increased frontal P3a amplitude to non-target correct rejections independent of task difficulty. Task difficulty did however, moderate d-amp effects on EEG during target performance. D-amp suppressed frontal theta power during easy target responses which negatively correlated with drug-induced improvement in hit rate while d-amp-induced changes in P3b amplitude during hard target trials strongly correlated with drug-induced improvement in hit rate. In summary, d-amp affected both behavioral and neurophysiological measures of cognitive control elements. Under low-demand, d-amp diminished cognitive control by suppressing theta, yet under high-demand it boosted control in concert with higher P3b amplitudes. These findings thus appear to reflect a gain-sharpening effect of d-amp: during high-demand processes were boosted while during low-demand processes were neglected. Future studies will use these neurophysiological measures of cognitive control as biomarkers to predict d-amp sensitivity in people with cognitive control deficits, including schizophrenia.


Cognition , Electroencephalography , Adult , Humans , Dextroamphetamine/pharmacology , Healthy Volunteers
10.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Article En | MEDLINE | ID: mdl-34338765

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Cannabinoids/pharmacology , HIV Infections/physiopathology , Sensory Gating/drug effects , Acoustic Stimulation , Animals , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Female , Hallucinogens/pharmacology , Male , Prepulse Inhibition/drug effects , Rats , Rats, Transgenic , Reflex, Startle/drug effects
11.
Cogn Affect Behav Neurosci ; 21(6): 1207-1221, 2021 12.
Article En | MEDLINE | ID: mdl-34312815

The HIV transgenic (HIVtg) rat is a commonly used animal model of chronic HIV infection that exhibits a wide range of cognitive deficits. To date, relatively little work has been conducted on these rats' capacity for reversal learning, an assay of executive function and cognitive flexibility used in humans. The present study sought to determine the impact of HIV genotype on probabilistic reversal learning, effortful motivation, and spontaneous locomotion/exploration in rats. Male (n = 8) and female (n = 8) HIVtg rats and wildtype (WT) controls were utilized. Cognitive flexibility was assessed via the Probabilistic Reversal Learning Task (PRLT), which reinforced responses to two stimuli on differential probabilistic schedules that periodically reversed. Effortful motivation and locomotor/exploratory behavior were assessed via the Progressive Ratio Breakpoint Task (PRBT) and the Behavioral Pattern Monitor (BPM), respectively. Regardless of sex, HIVtg rats required fewer trials to ascertain initial PRLT reward schedules than WT rats, and completed the same number of reversals. Secondary behaviors suggested that HIVtg PRLT performance was facilitated by a speed-accuracy tradeoff strategy. No main or interactive effects of genotype were observed in the PRBT or BPM. Relative to WT controls, HIVtg rats exhibited superior probabilistic reinforcement learning. Reversal learning was unaffected by HIV genotype, as was effortful motivation and exploratory behavior. These findings contrast with previous characterizations of the HIVtg rat, thus indicating a nuanced cognitive profile that is dependent upon such task specifications as within- versus between-session assessment and probabilistic versus deterministic reward schedules.


HIV Infections , Reversal Learning , Animals , Female , HIV Infections/genetics , Male , Rats , Rats, Transgenic , Reinforcement, Psychology , Reward
12.
Eur Neuropsychopharmacol ; 42: 75-86, 2021 01.
Article En | MEDLINE | ID: mdl-33191077

Bipolar disorder (BD) is a severe mental illness affecting 2% of the global population. Current pharmacotherapies provide incomplete symptom remediation, highlighting the need for novel therapeutics. BD is characterized by fluctuations between mania and depression, likely driven by shifts between hyperdopaminergia and hypercholinergia, respectively. Hyperdopaminergia may result from insufficient activity of the dopamine transporter (DAT), the primary mediator of synaptic dopamine clearance. The DAT knockdown (DAT KD) mouse recreates this mechanism and exhibits a highly reproducible hyperexploratory profile in the cross-species translatable Behavioral Pattern Monitor (BPM) that is: (a) consistent with that observed in BD mania patients; and (b) partially normalized by chronic lithium and valproate treatment. The DAT KD/BPM model of mania therefore exhibits high levels of face-, construct-, and predictive-validity for the pre-clinical assessment of putative anti-mania drugs. Three different drug regimens - chronic nicotine (nicotinic acetylcholine receptor (nAChR) agonist; 40 mg/kg/d, 26 d), subchronic suramin (anti-purinergic; 20 mg/kg, 1 × /wk, 4 wks), and subchronic resveratrol (striatal DAT upregulator; 20 mg/kg/d, 4 d) - were administered to separate cohorts of male and female DAT KD- and wildtype (WT) littermate mice, and exploration was assessed in the BPM. Throughout, DAT KD mice exhibited robust hyperexploratory profiles relative to WTs. Nicotine partially normalized this behavior. Resveratrol modestly upregulated DAT expression but did not normalize DAT KD behavior. These results support the mania-like profile of DAT KD mice, which may be partially remediated by nAChR agonists via restoration of disrupted catecholaminergic/cholinergic equilibrium. Delineating the precise mechanism of action of nicotine could identify more selective therapeutic targets.


Dopamine Plasma Membrane Transport Proteins , Nicotine , Animals , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Exploratory Behavior , Female , Humans , Male , Mania , Mice , Mice, Inbred C57BL , Nicotine/pharmacology , Resveratrol/pharmacology , Suramin
13.
Neuropsychopharmacology ; 45(13): 2180-2188, 2020 12.
Article En | MEDLINE | ID: mdl-32961542

The uncompetitive low-affinity NMDA receptor antagonist, memantine, acutely increases electrophysiological measures of auditory information processing in both healthy subjects (HS) and patients with schizophrenia. Memantine effects on functional measures of auditory discrimination performance and learning are not known; conceivably, beneficial effects on these measures might suggest a role for memantine in augmenting the cognitive and functional impact of auditory targeted cognitive training (TCT). Here, carefully characterized HS (n = 20) and schizophrenia patients (n = 22) were tested in measures of auditory discrimination performance (words-in-noise (WIN), quick speech-in-noise (QuickSIN), gaps-in-noise) and auditory frequency modulation learning (a component of TCT) on 2 days about a week apart, after ingesting either placebo or 20 mg memantine po, in a double-blind, within-subject cross-over random order design. Memantine modestly enhanced functional measures of auditory discrimination in both schizophrenia patients (WIN) and HS (WIN and QuickSIN), as well as auditory frequency modulation learning in schizophrenia patients. These findings converge with a growing literature showing that memantine can enhance a range of metrics of auditory function. These properties could contribute to the apparent benefits of memantine as an adjunctive treatment in schizophrenia, and suggest that memantine might augment learning and potentially clinical gains from auditory-based TCT.


Memantine , Schizophrenia , Auditory Perception , Discrimination, Psychological , Double-Blind Method , Humans , Memantine/therapeutic use , Receptors, N-Methyl-D-Aspartate , Schizophrenia/drug therapy
14.
Psychopharmacology (Berl) ; 237(7): 1959-1972, 2020 Jul.
Article En | MEDLINE | ID: mdl-32318751

RATIONALE: Cognitive dysfunction mediates functional impairment in patients with schizophrenia, necessitating the timely development of pro-cognitive therapeutics. An important initial step in this process is to establish what, if any, pro-cognitive agents and associated mechanisms can be identified using cross-species translational paradigms. For example, attentional deficits-a core feature of schizophrenia-can be measured across species using the 5-choice continuous performance test (5C-CPT). The psychostimulant, amphetamine, improves human and rodent 5C-CPT performance. OBJECTIVE: Here, we tested whether amphetamine would similarly improve 5C-CPT performance in the presence of dopamine D2 receptor blockade, since pro-cognitive treatments in schizophrenia would virtually always be used in conjunction with D2 receptor antagonists. METHODS: We established the dose-response effects of amphetamine (0, 0.1, 0.3, or 1.0 mg/kg) and haloperidol (0, 3.2, 10, or 32 µg/kg) on 5C-CPT performance in Long Evans rats, and then tested an amphetamine (0.3 mg/kg) × haloperidol (10 µg/kg) interaction; the low dose was chosen because higher doses exerted deleterious non-specific effects on performance. RESULTS: Amphetamine improved 5C-CPT performance in poorly performing rats by increasing target detection, independent of haloperidol pretreatment. CONCLUSIONS: The pro-attentional effects of amphetamine were most likely mediated by dopamine release at D1-family receptors, since they persisted in the presence of acute D2 blockade. Alternative explanations for these findings are also discussed, as are their potential implications for future pro-cognitive therapeutics in schizophrenia.


Amphetamine/pharmacology , Attention/drug effects , Central Nervous System Stimulants/pharmacology , Choice Behavior/drug effects , Dopamine Antagonists/administration & dosage , Haloperidol/administration & dosage , Animals , Attention/physiology , Choice Behavior/physiology , Dose-Response Relationship, Drug , Male , Rats , Rats, Long-Evans , Schizophrenia/drug therapy , Schizophrenia/physiopathology
15.
Neuropharmacology ; 150: 15-26, 2019 05 15.
Article En | MEDLINE | ID: mdl-30844406

Deficits in cognition and motivation are common and debilitating aspects of psychiatric disorders, yet still go largely untreated. The neuropeptide oxytocin (OT) is a potential novel therapeutic for deficits in social cognition and motivation in psychiatric patients. However, the effects of OT on clinically relevant domains of non-social cognition and motivation remain under studied. The present study investigated the effects of acute and chronic (21-day) administration of subcutaneous OT (0.04, 0.2, and 1 mg/kg) in cross-species translatable operant paradigms of reward learning and effortful motivation in male and female Brown Norway (BN) rats (n = 8-10/group). Reward learning was assessed using the probabilistic reversal learning task (PRLT) and effortful motivation was measured using the progressive ratio breakpoint task (PRBT). As predicted, BN rats exhibited baseline deficits in the detection of reversals of reward contingency in the PRLT relative to Long Evans (LE) rats. The two strains performed equally in the PRBT. Thirty minutes after a single OT injection (1 mg/kg), measures of both initial probabilistic learning (trials to first criterion) and subsequent reversal learning (contingency switches) were significantly improved to levels comparable with LE rats. The OT effect on switches persisted in male, but not female, BN rats 30 min, 24 h, and 6 days after long-term OT administration, suggesting the induction of neuroplastic changes. OT did not affect effortful motivation at any time-point. The beneficial effects of OT on reward learning in the absence of increased effortful motivation support the development of OT as a novel therapeutic to improve cognitive functioning.


Conditioning, Operant/drug effects , Motivation/drug effects , Oxytocin/pharmacology , Reversal Learning/drug effects , Animals , Cognition/drug effects , Female , Male , Rats , Rats, Inbred BN , Reward
...