Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Eur J Neurosci ; 59(6): 1242-1259, 2024 Mar.
Article En | MEDLINE | ID: mdl-37941514

Ca2+ entry into nigrostriatal dopamine (DA) neurons and axons via L-type voltage-gated Ca2+ channels (LTCCs) contributes, respectively, to pacemaker activity and DA release and has long been thought to contribute to vulnerability to degeneration in Parkinson's disease. LTCC function is greater in DA axons and neurons from substantia nigra pars compacta than from ventral tegmental area, but this is not explained by channel expression level. We tested the hypothesis that LTCC control of DA release is governed rather by local mechanisms, focussing on candidate biological factors known to operate differently between types of DA neurons and/or be associated with their differing vulnerability to parkinsonism, including biological sex, α-synuclein, DA transporters (DATs) and calbindin-D28k (Calb1). We detected evoked DA release ex vivo in mouse striatal slices using fast-scan cyclic voltammetry and assessed LTCC support of DA release by detecting the inhibition of DA release by the LTCC inhibitors isradipine or CP8. Using genetic knockouts or pharmacological manipulations, we identified that striatal LTCC support of DA release depended on multiple intersecting factors, in a regionally and sexually divergent manner. LTCC function was promoted by factors associated with Parkinsonian risk, including male sex, α-synuclein, DAT and a dorsolateral co-ordinate, but limited by factors associated with protection, that is, female sex, glucocerebrosidase activity, Calb1 and ventromedial co-ordinate. Together, these data show that LTCC function in DA axons and isradipine effect are locally governed and suggest they vary in a manner that in turn might impact on, or reflect, the cellular stress that leads to parkinsonian degeneration.


Dopamine , Parkinson Disease , Female , Mice , Animals , Male , Isradipine/pharmacology , Isradipine/metabolism , Dopamine/metabolism , Calcium Channels, L-Type/metabolism , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Substantia Nigra/metabolism , Risk Factors , Calcium/metabolism
2.
Elife ; 112022 07 26.
Article En | MEDLINE | ID: mdl-35881440

The mTOR pathway is an essential regulator of cell growth and metabolism. Midbrain dopamine neurons are particularly sensitive to mTOR signaling status as activation or inhibition of mTOR alters their morphology and physiology. mTOR exists in two distinct multiprotein complexes termed mTORC1 and mTORC2. How each of these complexes affect dopamine neuron properties, and whether they have similar or distinct functions is unknown. Here, we investigated this in mice with dopamine neuron-specific deletion of Rptor or Rictor, which encode obligatory components of mTORC1 or mTORC2, respectively. We find that inhibition of mTORC1 strongly and broadly impacts dopamine neuron structure and function causing somatodendritic and axonal hypotrophy, increased intrinsic excitability, decreased dopamine production, and impaired dopamine release. In contrast, inhibition of mTORC2 has more subtle effects, with selective alterations to the output of ventral tegmental area dopamine neurons. Disruption of both mTOR complexes leads to pronounced deficits in dopamine release demonstrating the importance of balanced mTORC1 and mTORC2 signaling for dopaminergic function.


Dopamine , Dopaminergic Neurons , Animals , Dopaminergic Neurons/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , TOR Serine-Threonine Kinases/metabolism
3.
J Neurosci ; 42(9): 1738-1751, 2022 03 02.
Article En | MEDLINE | ID: mdl-35042768

Striatal adenosine A1 receptor (A1R) activation can inhibit dopamine release. A1Rs on other striatal neurons are activated by an adenosine tone that is limited by equilibrative nucleoside transporter 1 (ENT1) that is enriched on astrocytes and is ethanol sensitive. We explored whether dopamine release in nucleus accumbens core is under tonic inhibition by A1Rs, and is regulated by astrocytic ENT1 and ethanol. In ex vivo striatal slices from male and female mice, A1R agonists inhibited dopamine release evoked electrically or optogenetically and detected using fast-scan cyclic voltammetry, most strongly for lower stimulation frequencies and pulse numbers, thereby enhancing the activity-dependent contrast of dopamine release. Conversely, A1R antagonists reduced activity-dependent contrast but enhanced evoked dopamine release levels, even for single optogenetic pulses indicating an underlying tonic inhibition. The ENT1 inhibitor nitrobenzylthioinosine reduced dopamine release and promoted A1R-mediated inhibition, and, conversely, virally mediated astrocytic overexpression of ENT1 enhanced dopamine release and relieved A1R-mediated inhibition. By imaging the genetically encoded fluorescent adenosine sensor [GPCR-activation based (GRAB)-Ado], we identified a striatal extracellular adenosine tone that was elevated by the ENT1 inhibitor and sensitive to gliotoxin fluorocitrate. Finally, we identified that ethanol (50 mm) promoted A1R-mediated inhibition of dopamine release, through diminishing adenosine uptake via ENT1. Together, these data reveal that dopamine output dynamics are gated by a striatal adenosine tone, limiting amplitude but promoting contrast, regulated by ENT1, and promoted by ethanol. These data add to the diverse mechanisms through which ethanol modulates striatal dopamine, and to emerging datasets supporting astrocytic transporters as important regulators of striatal function.SIGNIFICANCE STATEMENT Dopamine axons in the mammalian striatum are emerging as strategic sites where neuromodulators can powerfully influence dopamine output in health and disease. We found that ambient levels of the neuromodulator adenosine tonically inhibit dopamine release in nucleus accumbens core via adenosine A1 receptors (A1Rs), to a variable level that promotes the contrast in dopamine signals released by different frequencies of activity. We reveal that the equilibrative nucleoside transporter 1 (ENT1) on astrocytes limits this tonic inhibition, and that ethanol promotes it by diminishing adenosine uptake via ENT1. These findings support the hypotheses that A1Rs on dopamine axons inhibit dopamine release and, furthermore, that astrocytes perform important roles in setting the level of striatal dopamine output, in health and disease.


Astrocytes , Dopamine , Equilibrative Nucleoside Transporter 1 , Ethanol , Nucleus Accumbens , Receptor, Adenosine A1 , Adenosine/pharmacology , Adenosine A1 Receptor Agonists/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Dopamine/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Ethanol/pharmacology , Female , Male , Mice , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Adenosine A1/metabolism
4.
Cells ; 10(3)2021 03 23.
Article En | MEDLINE | ID: mdl-33806845

Striatal dopamine (DA) release is critical for motivated actions and reinforcement learning, and is locally influenced at the level of DA axons by other striatal neurotransmitters. Here, we review a wealth of historical and more recently refined evidence indicating that DA output is inhibited by striatal γ-aminobutyric acid (GABA) acting via GABAA and GABAB receptors. We review evidence supporting the localisation of GABAA and GABAB receptors to DA axons, as well as the identity of the striatal sources of GABA that likely contribute to GABAergic modulation of DA release. We discuss emerging data outlining the mechanisms through which GABAA and GABAB receptors inhibit the amplitude as well as modulate the short-term plasticity of DA release. Furthermore, we highlight recent data showing that DA release is governed by plasma membrane GABA uptake transporters on striatal astrocytes, which determine ambient striatal GABA tone and, by extension, the tonic inhibition of DA release. Finally, we discuss how the regulation of striatal GABA-DA interactions represents an axis for dysfunction in psychomotor disorders associated with dysregulated DA signalling, including Parkinson's disease, and could be a novel therapeutic target for drugs to modify striatal DA output.


Axons/metabolism , Corpus Striatum/metabolism , Dopamine/metabolism , Signal Transduction , gamma-Aminobutyric Acid/metabolism , Animals , Humans , Receptors, GABA/metabolism
5.
Nat Commun ; 11(1): 4958, 2020 10 02.
Article En | MEDLINE | ID: mdl-33009395

Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions.


Corpus Striatum/metabolism , Dopamine/metabolism , Down-Regulation , GABA Plasma Membrane Transport Proteins/metabolism , Parkinsonian Disorders/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Astrocytes/metabolism , Cell Membrane/metabolism , Disease Models, Animal , Glutamate Decarboxylase/metabolism , Mice, Inbred C57BL , Models, Biological , Nucleus Accumbens/metabolism
6.
Nat Commun ; 10(1): 4263, 2019 09 19.
Article En | MEDLINE | ID: mdl-31537790

Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short-term plasticity of dopamine release, using fast-scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short-term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K+-gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short-term plasticity, governing the balance between release-dependent and independent mechanisms that also show region-specific gating.


Axons/metabolism , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Animals , Biological Transport , Dopamine Uptake Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology
7.
Brain Struct Funct ; 224(7): 2567-2576, 2019 Sep.
Article En | MEDLINE | ID: mdl-31243530

Striatal fast-spiking interneurons (FSIs) potently inhibit the output neurons of the striatum and, as such, powerfully modulate action learning. Through electrical synaptic coupling, FSIs are theorized to temporally coordinate their activity. This has important implications for their ability to temporally summate inhibition on downstream striatal projection neurons. While some in vivo single-unit electrophysiological recordings of putative FSIs support coordinated firing, others do not. Moreover, it is unclear as to what aspect of action FSIs encode. To address this, we used in vivo calcium imaging of genetically identified FSIs in freely moving mice and applied machine learning analyses to decipher the relationship between FSI activity and movement. We report that FSIs exhibit ensemble activity that encodes the speed of action sub-components, including ambulation and head movements. These results suggest FSI population dynamics fit within a Hebbian model for ensemble inhibition of striatal output guiding action.


Action Potentials/physiology , Corpus Striatum/physiology , Interneurons/physiology , Neurons/physiology , Animals , Female , Male , Mice, Transgenic , Neostriatum/physiology
8.
Neuropsychopharmacology ; 44(6): 1114-1122, 2019 05.
Article En | MEDLINE | ID: mdl-30758322

The nucleus accumbens is a critical integration center for reward-related circuitry and is comprised primarily of medium spiny projection neurons. The dynamic balance of excitation and inhibition onto medium spiny neurons determines the output of this structure. While nucleus accumbens excitatory synaptic plasticity is well-characterized, inhibitory synaptic plasticity mechanisms and their potential relevance to shaping motivated behaviors is poorly understood. Here we report the discovery of long-term depression of inhibitory synaptic transmission in the mouse nucleus accumbens core. This long-term depression is postsynaptically expressed, tropomyosin kinase B (TrkB) receptor-mediated, and augmented in the presence of ethanol. Our findings support the emerging view that TrkB signaling regulates inhibitory synaptic plasticity and suggest this mechanism in the nucleus accumbens as a target for ethanol modulation of reward.


Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Long-Term Synaptic Depression , Membrane Glycoproteins/metabolism , Neural Inhibition , Nucleus Accumbens , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Animals , Female , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Male , Mice , Mice, Inbred C57BL , Neural Inhibition/drug effects , Neural Inhibition/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
9.
Cell Rep ; 26(6): 1389-1398.e3, 2019 02 05.
Article En | MEDLINE | ID: mdl-30726725

Glutamatergic projections of the thalamic rostral intralaminar nuclei of the thalamus (rILN) innervate the dorsal striatum (DS) and are implicated in dopamine (DA)-dependent incubation of drug seeking. However, the mechanism by which rILN signaling modulates reward seeking and striatal DA release is unknown. We find that activation of rILN inputs to the DS drives cholinergic interneuron burst-firing behavior and DA D2 receptor-dependent post-burst pauses in cholinergic interneuron firing. In vivo, optogenetic activation of this pathway drives reinforcement in a DA D1 receptor-dependent manner, and chemogenetic suppression of the rILN reduces dopaminergic nigrostriatal terminal activity as measured by fiber photometry. Altogether, these data provide evidence that the rILN activates striatal cholinergic interneurons to enhance the pursuit of reward through local striatal DA release and introduce an additional level of complexity in our understanding of striatal DA signaling.


Corpus Striatum/physiology , Dopamine/metabolism , Reward , Thalamus/physiology , Animals , Corpus Striatum/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Optogenetics , Substantia Nigra/metabolism , Substantia Nigra/physiology , Thalamus/metabolism
10.
J Neurosci ; 39(6): 1058-1065, 2019 02 06.
Article En | MEDLINE | ID: mdl-30541909

Nigrostriatal dopamine (DA) is critical to action selection and learning. Axonal DA release is locally influenced by striatal neurotransmitters. Striatal neurons are principally GABAergic projection neurons and interneurons, and a small minority of other neurons are cholinergic interneurons (ChIs). ChIs strongly gate striatal DA release via nicotinic receptors (nAChRs) identified on DA axons. Striatal GABA is thought to modulate DA, but GABA receptors have not been documented conclusively on DA axons. However, ChIs express GABA receptors and are therefore candidates for potential mediators of GABA regulation of DA. We addressed whether striatal GABA and its receptors can modulate DA release directly, independently from ChI regulation, by detecting DA in striatal slices from male mice using fast-scan cyclic voltammetry in the absence of nAChR activation. DA release evoked by single electrical pulses in the presence of the nAChR antagonist dihydro-ß-erythroidine was reduced by GABA or agonists of GABAA or GABAB receptors, with effects prevented by selective GABA receptor antagonists. GABA agonists slightly modified the frequency sensitivity of DA release during short stimulus trains. GABA agonists also suppressed DA release evoked by optogenetic stimulation of DA axons. Furthermore, antagonists of GABAA and GABAB receptors together, or GABAB receptors alone, significantly enhanced DA release evoked by either optogenetic or electrical stimuli. These results indicate that striatal GABA can inhibit DA release through GABAA and GABAB receptors and that these actions are not mediated by cholinergic circuits. Furthermore, these data reveal that there is a tonic inhibition of DA release by striatal GABA operating through predominantly GABAB receptors.SIGNIFICANCE STATEMENT The principal inhibitory transmitter in the mammalian striatum, GABA, is thought to modulate striatal dopamine (DA) release, but definitive evidence for GABA receptors on DA axons is lacking. Striatal cholinergic interneurons regulate DA release via axonal nicotinic receptors (nAChRs) and also express GABA receptors, but they have not been eliminated as potentially critical mediators of DA regulation by GABA. Here, we found that GABAA and GABAB receptors inhibit DA release without requiring cholinergic interneurons. Furthermore, ambient levels of GABA inhibited DA release predominantly through GABAB receptors. These findings provide further support for direct inhibition of DA release by GABA receptors and reveal that striatal GABA operates a tonic inhibition on DA output that could critically influence striatal output.


Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Substantia Nigra/metabolism , Animals , Axons/metabolism , Cholinergic Antagonists/pharmacology , Dihydro-beta-Erythroidine/pharmacology , Electric Stimulation , GABA Agonists/pharmacology , GABA Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Optogenetics , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/metabolism , Receptors, GABA-A/drug effects , Receptors, GABA-B/drug effects , gamma-Aminobutyric Acid/metabolism
11.
Cell Rep ; 22(1): 84-95, 2018 01 02.
Article En | MEDLINE | ID: mdl-29298436

Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC) input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action.


Basal Ganglia , Gyrus Cinguli , Interneurons , Animals , Basal Ganglia/cytology , Basal Ganglia/physiology , Gyrus Cinguli/cytology , Gyrus Cinguli/physiology , Interneurons/cytology , Interneurons/physiology , Mice , Mice, Transgenic
12.
J Undergrad Neurosci Educ ; 14(2): A111-6, 2016.
Article En | MEDLINE | ID: mdl-27385919

Optogenetics is a technology that is growing rapidly in neuroscience, establishing itself as a fundamental investigative tool. As this tool is increasingly utilized across the neuroscience community and is one of the primary research techniques being presented at neuroscience conferences and in journals, we believe that it is important that this technology is introduced into the undergraduate neuroscience research laboratory. While there has been a significant body of work concentrated to deploy optogenetics in invertebrate model organisms, little to no work has focused on brining this technology to mammalian model organisms in undergraduate neuroscience laboratories. The establishment of in vivo optogenetics could provide for high-impact independent research projects for upper-level undergraduate students. Here we review the considerations for establishing in vivo optogenetics with the use of rodents in an undergraduate laboratory setting and provide some cost-saving guidelines to assist in making optogenetic technologies financially accessible. We discuss opsin selection, cell-specific opsin expression strategies, species selection, experimental design, selection of light delivery systems, and the construction of implantable optical fibers for the application of in vivo optogenetics in rodents.

13.
Neuropsychopharmacology ; 41(7): 1831-40, 2016 06.
Article En | MEDLINE | ID: mdl-26758662

The dorsolateral striatum mediates habit formation, which is expedited by exposure to alcohol. Across species, alcohol exposure disinhibits the DLS by dampening GABAergic transmission onto this structure's principal medium spiny projection neurons (MSNs), providing a potential mechanistic basis for habitual alcohol drinking. However, the molecular and circuit components underlying this disinhibition remain unknown. To examine this, we used a combination of whole-cell patch-clamp recordings and optogenetics to demonstrate that ethanol potently depresses both MSN- and fast-spiking interneuron (FSI)-MSN GABAergic synaptic transmission in the DLS. Concentrating on the powerfully inhibitory FSI-MSN synapse, we further show that acute exposure of ethanol (50 mM) to striatal slices activates delta opioid receptors that reside on FSI axon terminals and negatively couple to adenylyl cyclase to induce a long-term depression of GABA release onto both direct and indirect pathway MSNs. These findings elucidate a mechanism through which ethanol may globally disinhibit the DLS.


Central Nervous System Depressants/pharmacology , Corpus Striatum/cytology , Ethanol/pharmacology , Neurons/drug effects , Presynaptic Terminals/drug effects , Receptors, Opioid, delta/metabolism , Analgesics, Opioid/pharmacology , Animals , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Guanosine Diphosphate/analogs & derivatives , Guanosine Diphosphate/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Narcotic Antagonists/pharmacology , Parvalbumins/genetics , Parvalbumins/metabolism , Presynaptic Terminals/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptors, Opioid, delta/antagonists & inhibitors , Thionucleotides/pharmacology , gamma-Aminobutyric Acid/metabolism
14.
Brain Res ; 1594: 215-22, 2015 Jan 12.
Article En | MEDLINE | ID: mdl-25451124

Cholinergic innervation of the prefrontal cortex is critical for various forms of cognition, although the efferent modulators contributing to acetylcholine (ACh) release are not well understood. The main source of cortical ACh, the basal forebrain, receives projections from lateral and perifornical hypothalamic neurons releasing the peptides orexin (orexin A; OxA, and orexin B; OxB), of which OxA is hypothesized to play a role in various cognitive functions. We sought to assess one such function known to be susceptible to basal forebrain cholinergic manipulation, olfactory discrimination acquisition, and reversal learning, in rats following intra-basal forebrain infusion of OxA or the orexin 1 receptor (OxR1) antagonist SB-334867. OxA administration facilitated, while OxR1 antagonism impaired performance on both the acquisition and reversal portions of the task. These data suggest that orexin acting in the basal forebrain may be important for cortical-dependant executive functions, possibly through the stimulation of cortical ACh release.


Basal Forebrain/metabolism , Executive Function/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Learning/physiology , Neuropeptides/metabolism , Orexin Receptors/metabolism , Animals , Male , Microdialysis , Olfactory Perception/physiology , Orexins , Rats , Rats, Sprague-Dawley
15.
J Med Primatol ; 43(3): 213-6, 2014 Jun.
Article En | MEDLINE | ID: mdl-24646188

BACKGROUND: A mammary nodule was noted in a male rhesus macaque during physical examination. METHODS AND RESULTS: Histopathological and immunohistochemical analysis was performed. Ductal carcinoma in situ was confirmed. CONCLUSIONS: To date, there are two reports of mammary carcinoma in male non-human primates, and none in the rhesus macaque.


Carcinoma, Intraductal, Noninfiltrating/pathology , Macaca mulatta , Mammary Neoplasms, Animal/pathology , Monkey Diseases/pathology , Animals , Immunohistochemistry , Male , Treatment Outcome
...