Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Cell Physiol ; 236(6): 4614-4624, 2021 06.
Article En | MEDLINE | ID: mdl-33305372

Supraphysiological levels of the osteoblast-enriched mineralization regulator ectonucleotide pyrophosphatase or phosphodiesterase-1 (NPP1) is associated with type 2 diabetes mellitus. We determined the impact of osteoblast-specific Enpp1 ablation on skeletal structure and metabolic phenotype in mice. Female, but not male, 6-week-old mice lacking osteoblast NPP1 expression (osteoblast-specific knockout [KO]) exhibited increased femoral bone volume or total volume (17.50% vs. 11.67%; p < .01), and reduced trabecular spacing (0.187 vs. 0.157 mm; p < .01) compared with floxed (control) mice. Furthermore, an enhanced ability of isolated osteoblasts from the osteoblast-specific KO to calcify their matrix in vitro compared to fl/fl osteoblasts was observed (p < .05). Male osteoblast-specific KO and fl/fl mice showed comparable glucose and insulin tolerance despite increased levels of insulin-sensitizing under-carboxylated osteocalcin (195% increase; p < .05). However, following high-fat-diet challenge, osteoblast-specific KO mice showed impaired glucose and insulin tolerance compared with fl/fl mice. These data highlight a crucial local role for osteoblast NPP1 in skeletal development and a secondary metabolic impact that predominantly maintains insulin sensitivity.


Bone and Bones/enzymology , Diet, High-Fat/adverse effects , Insulin Resistance , Osteoblasts/enzymology , Osteogenesis , Phosphoric Diester Hydrolases/deficiency , Pyrophosphatases/deficiency , Animals , Biomarkers/blood , Blood Glucose/metabolism , Bone and Bones/pathology , Cancellous Bone/enzymology , Cancellous Bone/pathology , Cells, Cultured , Disease Models, Animal , Female , Femur/enzymology , Femur/pathology , Insulin/blood , Male , Mice, Knockout , Osteoblasts/pathology , Osteocalcin/blood , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Sex Factors , Skull/enzymology , Skull/pathology , Tibia/enzymology , Tibia/pathology
2.
J Bone Miner Res ; 35(2): 357-367, 2020 02.
Article En | MEDLINE | ID: mdl-31596966

Arterial calcification is an important hallmark of cardiovascular disease and shares many similarities with skeletal mineralization. The bone-specific protein osteocalcin (OCN) is an established marker of vascular smooth muscle cell (VSMC) osteochondrogenic transdifferentiation and a known regulator of glucose metabolism. However, the role of OCN in controlling arterial calcification is unclear. We hypothesized that OCN regulates calcification in VSMCs and sought to identify the underpinning signaling pathways. Immunohistochemistry revealed OCN co-localization with VSMC calcification in human calcified carotid artery plaques. Additionally, 3 mM phosphate treatment stimulated OCN mRNA expression in cultured VSMCs (1.72-fold, p < 0.001). Phosphate-induced calcification was blunted in VSMCs derived from OCN null mice (Ocn -/- ) compared with cells derived from wild-type (WT) mice (0.37-fold, p < 0.001). Ocn -/- VSMCs showed reduced mRNA expression of the osteogenic marker Runx2 (0.51-fold, p < 0.01) and the sodium-dependent phosphate transporter, PiT1 (0.70-fold, p < 0.001), with an increase in the calcification inhibitor Mgp (1.42-fold, p < 0.05) compared with WT. Ocn -/- VSMCs also showed reduced mRNA expression of Axin2 (0.13-fold, p < 0.001) and Cyclin D (0.71 fold, p < 0.01), markers of Wnt signaling. CHIR99021 (GSK3ß inhibitor) treatment increased calcium deposition in WT and Ocn -/- VSMCs (1 µM, p < 0.001). Ocn -/- VSMCs, however, calcified less than WT cells (1 µM; 0.27-fold, p < 0.001). Ocn -/- VSMCs showed reduced mRNA expression of Glut1 (0.78-fold, p < 0.001), Hex1 (0.77-fold, p < 0.01), and Pdk4 (0.47-fold, p < 0.001). This was accompanied by reduced glucose uptake (0.38-fold, p < 0.05). Subsequent mitochondrial function assessment revealed increased ATP-linked respiration (1.29-fold, p < 0.05), spare respiratory capacity (1.59-fold, p < 0.01), and maximal respiration (1.52-fold, p < 0.001) in Ocn -/- versus WT VSMCs. Together these data suggest that OCN plays a crucial role in arterial calcification mediated by Wnt/ß-catenin signaling through reduced maximal respiration. Mitochondrial dynamics may therefore represent a novel therapeutic target for clinical intervention. © 2019 American Society for Bone and Mineral Research.


Vascular Calcification , Wnt Signaling Pathway , Animals , Cells, Cultured , Glucose , Mice , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Osteocalcin/genetics
...