Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 496
1.
Int J Pharm ; 659: 124232, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38759740

Continuous Direct Compaction (CDC) has emerged as a promising route towards producing solid dosage forms while reducing material, development time and energy consumption. Understanding the response of powder processing unit operations, especially blenders, is crucial. There is a substantial body of work around how lubrication via batch blender operation affects tablet critical quality attributes such as hardness and tensile strength. But, aside from being batch operations, the design of these blenders is such that they operate with low-shear, low-intensity mixing at Froude number values significantly below 0.4 (Froude number Fr being the dimensionless ratio of inertial to gravitational forces). The present work explores the performance of a mini-blender which has a fundamentally different mode of operation (static vessel with rotating blades around a mixing shaft as opposed to rotating vessel with no mixing shaft). This difference allows a substantially wider operating range in terms of speed and shear (and Fr values). The present work evaluates how its performance compares to other blenders studied in the literature. Tablet compaction data from blends produced at various intensities and regimes of mixing in the mini-blender follow a common trajectory. Model equations from literature are suitably modified by inclusion of the Froude number Fr, but only for situations where the Froude number was sufficiently high (1 < Fr). The results suggest that although a similar lubrication extent plateau is eventually reached it is the intensity of mixing (i.e. captured using the Froude number as a surrogate) which is important for the lubrication dynamics in the mini-blender, next to the number of revolutions. The degree of fill or headspace, on the other hand, is only crucial to the performance of common batch blenders. Testing using alternative formulations shows the same common trend across mixing intensities, suggesting the validity of the approach to capture lubrication dynamics for this system.


Drug Compounding , Powders , Tablets , Drug Compounding/methods , Powders/chemistry , Tensile Strength , Technology, Pharmaceutical/methods , Excipients/chemistry , Hardness , Chemistry, Pharmaceutical/methods
2.
ACS Appl Mater Interfaces ; 16(19): 25581-25588, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708910

Diamond has become a promising candidate for high-power devices based on its ultrawide bandgap and excellent thermoelectric properties, where an appropriate gate dielectric has been a bottleneck hindering the development of diamond devices. Herein, we have systematically investigated the structural arrangement and electronic properties of diamond/high-κ oxide (HfO2, ZrO2) heterojunctions by first-principles calculations with a SiO2 interlayer. Charge analysis reveals that the C-Si bonding interface attracts a large amount of charge concentrated at the diamond interface, indicating the potential for the formation of a 2D hole gas (2DHG). The diamond/HfO2 and diamond/ZrO2 heterostructures exhibit similar "Type II" band alignments with VBOs of 2.47 and 2.21 eV, respectively, which is consistent with experimental predictions. The introduction of a SiO2 dielectric layer into the diamond/SiO2/high-κ stacks exhibits the typical "Type I″ straddling band offsets (BOs). In addition, the wide bandgap SiO2 interlayer keeps the valence band maximum (VBM) and conduction band minimum (CBM) in the stacks away from those of diamond, effectively confining the electrons and holes in MOS devices. This work exhibits the potential of SiO2/high-κ oxide gate dielectrics for diamond devices and provides theoretical insights into the rational design of high-quality gate dielectrics for diamond-based MOS device applications.

3.
Cureus ; 16(3): e56882, 2024 Mar.
Article En | MEDLINE | ID: mdl-38659525

Giant condyloma acuminata (GCA) is a rare, locally aggressive manifestation of human papillomavirus (HPV) infection, typically affecting the anorectal area. Patients with GCA often have a poor prognosis due to the high risk of malignant transformation. In this case report, we present a 39-year-old man with HIV who developed progressive and refractory anorectal GCA. Despite initially non-cancerous pathology results, there were concerns regarding a malignant component to the mass. Multidisciplinary discussions led to the decision to pursue definitive radiation therapy. This case report and review of the literature highlight the role of radiation in the management of GCA and the importance of a multidisciplinary approach in the treatment of complex cases.

4.
Front Vet Sci ; 11: 1328058, 2024.
Article En | MEDLINE | ID: mdl-38384948

Introduction: The presence of cancer in dogs was detected by Raman spectroscopy of urine samples and chemometric analysis of spectroscopic data. The procedure created a multimolecular spectral fingerprint with hundreds of features related directly to the chemical composition of the urine specimen. These were then used to detect the broad presence of cancer in dog urine as well as the specific presence of lymphoma, urothelial carcinoma, osteosarcoma, and mast cell tumor. Methods: Urine samples were collected via voiding, cystocentesis, or catheterization from 89 dogs with no history or evidence of neoplastic disease, 100 dogs diagnosed with cancer, and 16 dogs diagnosed with non-neoplastic urinary tract or renal disease. Raman spectra were obtained of the unprocessed bulk liquid urine samples and were analyzed by ISREA, principal component analysis (PCA), and discriminant analysis of principal components (DAPC) were applied using the Rametrix®Toolbox software. Results and discussion: The procedure identified a spectral fingerprint for cancer in canine urine, resulting in a urine screening test with 92.7% overall accuracy for a cancer vs. cancer-free designation. The urine screen performed with 94.0% sensitivity, 90.5% specificity, 94.5% positive predictive value (PPV), 89.6% negative predictive value (NPV), 9.9 positive likelihood ratio (LR+), and 0.067 negative likelihood ratio (LR-). Raman bands responsible for discerning cancer were extracted from the analysis and biomolecular associations were obtained. The urine screen was more effective in distinguishing urothelial carcinoma from the other cancers mentioned above. Detection and classification of cancer in dogs using a simple, non-invasive, rapid urine screen (as compared to liquid biopsies using peripheral blood samples) is a critical advancement in case management and treatment, especially in breeds predisposed to specific types of cancer.

5.
Vet Comp Oncol ; 22(2): 174-185, 2024 Jun.
Article En | MEDLINE | ID: mdl-38332673

Meningiomas are the most common feline primary brain tumours, and calvarial hyperostosis (CH) is frequently documented in association with this neoplastic entity. The clinical significance of and mechanisms driving the formation of CH in cats with meningiomas are poorly understood, although tumour invasion into the skull and tumour production of cytokines and enzymes have been implicated as causes of CH in humans. This retrospective study investigated relationships between signalment, MRI or CT imaging features, histopathologic tumour characteristics, alkaline phosphatase (ALP) isoenzyme concentrations, tumour expression of matrix metalloproteinases (MMP)-2, MMP-9, and interleukin-6 (IL-6), and progression free survival times (PFS) following surgical treatment in 27 cats with meningiomas with (n = 15) or without (n = 12) evidence of CH. No significant differences in breed, age, sex, body weight, tumour grade, tumour volume, peritumoral edema burden, ALP isoenzyme concentrations, tumour Ki-67 labelling indices or MMP-2 or MMP-9 expression and activity, or PFS were noted between cats with or without CH. There was a trend towards higher serum (p = .06) and intratumoral (p = .07) concentrations of IL-6 in cats with CH, but these comparisons were not statistically significant. Histologic evidence of tumour invasion into bone was observed in 5/12 (42%) with CH and in no (0/6) cats without CH, although this was not statistically significant (p = .07). Tumour invasion into bone and tumour production of IL-6 may contribute to the formation of meningioma associated CH in cats, although larger studies are required to further substantiate these findings and determine their clinical relevance.


Cat Diseases , Hyperostosis , Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Tomography, X-Ray Computed , Animals , Meningioma/veterinary , Meningioma/diagnostic imaging , Meningioma/pathology , Cats , Cat Diseases/diagnostic imaging , Cat Diseases/pathology , Magnetic Resonance Imaging/veterinary , Female , Male , Hyperostosis/veterinary , Hyperostosis/diagnostic imaging , Hyperostosis/pathology , Retrospective Studies , Tomography, X-Ray Computed/veterinary , Meningeal Neoplasms/veterinary , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Skull/diagnostic imaging , Skull/pathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Interleukin-6/metabolism
6.
Cancers (Basel) ; 16(3)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38339315

Neurotropic oncolytic viruses are appealing agents to treat brain tumors as they penetrate the blood-brain barrier and induce preferential cytolysis of neoplastic cells. The pathobiological similarities between human and canine brain tumors make immunocompetent dogs with naturally occurring tumors attractive models for the study of oncolytic virotherapies. In this dose-escalation/expansion study, an engineered Lasota NDV strain targeting the urokinase plasminogen activator system (rLAS-uPA) was administered by repetitive intravenous infusions to 20 dogs with intracranial tumors with the objectives of characterizing toxicities, immunologic responses, and neuroradiological anti-tumor effects of the virus for up to 6 months following treatment. Dose-limiting toxicities manifested as fever, hematologic, and neurological adverse events, and the maximum tolerated dose (MTD) of rLAS-uPA was 2 × 107 pfu/mL. Mild adverse events, including transient infusion reactions, diarrhea, and fever were observed in 16/18 of dogs treated at or below MTD. No infectious virus was recoverable from body fluids. Neutralizing antibodies to rLAS-uPA were present in all dogs by 2 weeks post-treatment, and viral genetic material was detected in post-treatment tumors from six dogs. Tumor volumetric reductions occurred in 2/11 dogs receiving the MTD. Systemically administered rLAS-uPA NDV was safe and induced anti-tumor effects in canine brain tumors, although modifications to evade host anti-viral immunity are needed to optimize this novel therapy.

7.
Adv Mater ; 35(42): e2305742, 2023 Oct.
Article En | MEDLINE | ID: mdl-37667462

Herein, facet-engineered Cu2 O nanostructures are synthesized by wet chemical methods for electrocatalytic HER, and it is found that the octahedral Cu2 O nanostructures with exposed crystal planes of (111) (O-Cu2 O) has the best hydrogen evolution performance. Operando Raman spectroscopy and ex-situ characterization techniques showed that Cu2 O is reduced during HER, in which Cu dendrites are grown on the surface of the Cu2 O nanostructures, resulting in the better HER performance of O-Cu2 O after HER (O-Cu2 O-A) compared with that of the as-prepared O-Cu2 O. Under illumination, the onset potential of O-Cu2 O-A is ca. 52 mV positive than that of O-Cu2 O, which is induced by the plasmon-activated electrochemical system consisting of Cu2 O and the in-situ generated Cu dendrites. Incident photon-to-current efficiency (IPCE) measurements and the simulated UV-Vis spectrum demonstrate the hot electron injection (HEI) from Cu dendrites to Cu2 O. Ab initio nonadiabatic molecular dynamics (NAMD) simulations revealed the transfer of photogenerated electrons (27 fs) from Cu dendrites to Cu2 O nanostructures is faster than electron relaxation (170 fs), enhancing its surface plasmons activity, and the HEI of Cu dendrites increases the charge density of Cu2 O. These make the energy level of the catalyst be closer to that of H+ /H2 , evidenced by the plasmon-enhanced HER electrocatalytic activity.

8.
Adv Mater ; : e2305192, 2023 Sep 09.
Article En | MEDLINE | ID: mdl-37688451

Machine learning (ML) has emerged as a powerful tool in the research field of high entropy compounds (HECs), which have gained worldwide attention due to their vast compositional space and abundant regulatability. However, the complex structure space of HEC poses challenges to traditional experimental and computational approaches, necessitating the adoption of machine learning. Microscopically, machine learning can model the Hamiltonian of the HEC system, enabling atomic-level property investigations, while macroscopically, it can analyze macroscopic material characteristics such as hardness, melting point, and ductility. Various machine learning algorithms, both traditional methods and deep neural networks, can be employed in HEC research. Comprehensive and accurate data collection, feature engineering, and model training and selection through cross-validation are crucial for establishing excellent ML models. ML also holds promise in analyzing phase structures and stability, constructing potentials in simulations, and facilitating the design of functional materials. Although some domains, such as magnetic and device materials, still require further exploration, machine learning's potential in HEC research is substantial. Consequently, machine learning has become an indispensable tool in understanding and exploiting the capabilities of HEC, serving as the foundation for the new paradigm of Artificial-intelligence-assisted material exploration.

9.
Nat Genet ; 55(10): 1696-1708, 2023 Oct.
Article En | MEDLINE | ID: mdl-37770634

Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most prevalent type of breast cancer, in which endocrine therapy resistance and distant relapse remain unmet challenges. Accurate molecular classification is urgently required for guiding precision treatment. We established a large-scale multi-omics cohort of 579 patients with HR+/HER2- breast cancer and identified the following four molecular subtypes: canonical luminal, immunogenic, proliferative and receptor tyrosine kinase (RTK)-driven. Tumors of these four subtypes showed distinct biological and clinical features, suggesting subtype-specific therapeutic strategies. The RTK-driven subtype was characterized by the activation of the RTK pathways and associated with poor outcomes. The immunogenic subtype had enriched immune cells and could benefit from immune checkpoint therapy. In addition, we developed convolutional neural network models to discriminate these subtypes based on digital pathology for potential clinical translation. The molecular classification provides insights into molecular heterogeneity and highlights the potential for precision treatment of HR+/HER2- breast cancer.


Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Receptor, ErbB-2/genetics , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/therapeutic use , Prognosis , Biomarkers, Tumor/genetics
10.
Nat Commun ; 14(1): 4017, 2023 07 07.
Article En | MEDLINE | ID: mdl-37419892

Aromatase inhibitors (AIs) reduce recurrences and mortality in postmenopausal patients with oestrogen receptor positive (ER+) breast cancer (BC), but >20% of patients will eventually relapse. Given the limited understanding of intrinsic resistance in these tumours, here we conduct a large-scale molecular analysis to identify features that impact on the response of ER + HER2- BC to AI. We compare the 15% of poorest responders (PRs, n = 177) as measured by proportional Ki67 changes after 2 weeks of neoadjuvant AI to good responders (GRs, n = 190) selected from the top 50% responders in the POETIC trial and matched for baseline Ki67 categories. In this work, low ESR1 levels are associated with poor response, high proliferation, high expression of growth factor pathways and non-luminal subtypes. PRs having high ESR1 expression have similar proportions of luminal subtypes to GRs but lower plasma estradiol levels, lower expression of estrogen response genes, higher levels of tumor infiltrating lymphocytes and immune markers, and more TP53 mutations.


Aromatase Inhibitors , Breast Neoplasms , Humans , Female , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Ki-67 Antigen/metabolism , Postmenopause , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Neoplasm Recurrence, Local , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
11.
Ann Surg ; 278(6): e1313-e1326, 2023 12 01.
Article En | MEDLINE | ID: mdl-37450698

OBJECTIVES: To test whether mitochondrial transplantation (MITO) mitigates damage in 2 models of acute kidney injury (AKI). BACKGROUND: MITO is a process where exogenous isolated mitochondria are taken up by cells. As virtually any morbid clinical condition is characterized by mitochondrial distress, MITO may find a role as a treatment modality in numerous clinical scenarios including AKI. METHODS: For the in vitro experiments, human proximal tubular cells were damaged and then treated with mitochondria or placebo. For the ex vivo experiments, we developed a non-survival ex vivo porcine model mimicking the donation after cardiac death renal transplantation scenario. One kidney was treated with mitochondria, although the mate organ received placebo, before being perfused at room temperature for 24 hours. Perfusate samples were collected at different time points and analyzed with Raman spectroscopy. Biopsies taken at baseline and 24 hours were analyzed with standard pathology, immunohistochemistry, and RNA sequencing analysis. RESULTS: In vitro, cells treated with MITO showed higher proliferative capacity and adenosine 5'-triphosphate production, preservation of physiological polarization of the organelles and lower toxicity and reactive oxygen species production. Ex vivo, kidneys treated with MITO shed fewer molecular species, indicating stability. In these kidneys, pathology showed less damage whereas RNAseq analysis showed modulation of genes and pathways most consistent with mitochondrial biogenesis and energy metabolism and downregulation of genes involved in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. CONCLUSIONS: MITO mitigates AKI both in vitro and ex vivo.


Acute Kidney Injury , Kidney Transplantation , Reperfusion Injury , Humans , Swine , Animals , Kidney/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism
12.
JAMA Oncol ; 9(9): 1273-1282, 2023 09 01.
Article En | MEDLINE | ID: mdl-37382948

Importance: Combination therapy with cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i: palbociclib, ribociclib, abemaciclib) and endocrine therapy (ET) has been a major advance for the treatment of hormone receptor-positive (HR+), ERBB2 (formerly HER2)-negative (ERBB2-) advanced or metastatic breast cancer. Observations: Randomized phase 3 studies demonstrated that the addition of CDK4/6i reduced the hazard risk of disease progression by approximately half compared with hormonal monotherapy (an aromatase inhibitor, tamoxifen, or fulvestrant) in the first-line (1L) and/or second-line (2L) setting. Hence, the US Food and Drug Administration and European Medicines Agency approved 3 CDK4/6i, in both 1L and 2L settings. However, differences among the CDK4/6i regarding mechanisms of action, adverse effect profiles, and overall survival (OS) are emerging. Both abemaciclib and ribociclib have demonstrated efficacy in high-risk HR+ early breast cancer. While ET with or without CDK4/6i is accepted as standard treatment for persons with advanced HR+ ERBB2- metastatic breast cancer, several key issues remain. First, why are there discordances in OS in the metastatic setting and efficacy differences in the adjuvant setting? Additionally, apart from HR status, there are few biomarkers predictive of response to CDK4/6i plus ET, and these are not used routinely. Despite the clear OS advantage noted in the 1L and 2L metastatic setting with some CDK4/6i, a subset of patients with highly endocrine-sensitive disease do well with ET alone. Therefore, an unanswered question is whether some patients can postpone CDK4/6i until the 2L setting, particularly if financial toxicity is a concern. Finally, given the lack of endocrine responsiveness following progression on some CDK4/6i, strategies to optimally sequence treatment are needed. Conclusions and Relevance: Future research should focus on defining the role of each CDK4/6i in HR+ breast cancer and developing a biomarker-directed integration of these agents.


Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Cyclin-Dependent Kinase 4/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Aminopyridines/adverse effects , Breast Neoplasms/pathology , Receptor, ErbB-2 , Cyclin-Dependent Kinase 6/therapeutic use , Protein Kinase Inhibitors/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
13.
J Colloid Interface Sci ; 648: 317-326, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37301156

Exploring a new generation of eco-friendly gas insulation medium to replace greenhouse gas sulphur hexafluoride (SF6) in power industry is significant for reducing the greenhouse effect and building a low-carbon environment. The gas-solid compatibility of insulation gas with various electrical equipment is also of significance before practical applications. Herein, take a promising SF6 replacing gas trifluoromethyl sulfonyl fluoride (CF3SO2F) for example, one strategy to theoretically evaluate the gas-solid compatibility between insulation gas and the typical solid surfaces of common equipment was raised. Firstly, the active site where the CF3SO2F molecule is prone to interact with other compounds was identified. Secondly, the interaction strength and charge transfer between CF3SO2F and four typical solid surfaces of equipment were studied by first-principles calculations and further analysis was conducted, with SF6 as the control group. Then, the dynamic compatibility of CF3SO2F with solid surfaces was investigated by large-scale molecular dynamics simulations with the aid of deep learning. The results indicate that CF3SO2F has excellent compatibility similar to SF6, especially in the equipment whose contact surface is Cu, CuO, and Al2O3 due to their similar outermost orbital electronic structures. Besides, the dynamic compatibility with pure Al surfaces is poor. Finally, preliminary experimental verifications indicate the validity of the strategy.

14.
J Vet Intern Med ; 37(4): 1447-1454, 2023.
Article En | MEDLINE | ID: mdl-37246729

BACKGROUND: In humans, the T2-weighted (T2W)-fluid-attenuated inversion recovery (FLAIR) mismatch sign (T2FMM) is a specific imaging biomarker for the isocitrate dehydrogenase 1 (IDH1)-mutated, 1p/19q non-codeleted low-grade astrocytomas (LGA). The T2FMM is characterized by a homogeneous hyperintense T2W signal and a hypointense signal with a hyperintense peripheral rim on FLAIR sequences. In gliomas in dogs, the T2FMM has not been described. HYPOTHESES/OBJECTIVES: In dogs with focal intra-axial brain lesions, T2FMM will discriminate gliomas from other lesions. The T2FMM will be associated with the LGA phenotype and presence of microcysts on histopathology. Interobserver agreement for T2FMM magnetic resonance imaging (MRI) features will be high. ANIMALS: One hundred eighty-six dogs with histopathologically diagnosed focal intra-axial lesions on brain MRI including oligodendrogliomas (n = 90), astrocytomas (n = 47), undefined gliomas (n = 9), cerebrovascular accidents (n = 33), and inflammatory lesions (n = 7). METHODS: Two blinded raters evaluated the 186 MRI studies and identified cases with the T2FMM. Histopathologic and immunohistochemical slides of T2FMM cases were evaluated for morphologic features and IDH1-mutations and compared to cases without the T2FMM. Gene expression analyses were performed on a subset of oligodendrogliomas (n = 10) with and without T2FMM. RESULTS: The T2FMM was identified in 14/186 (8%) of MRI studies, and all dogs with T2FMM had oligodendrogliomas (n = 12 low-grade [LGO], n = 2 high-grade [HGO]; P < .001). Microcystic change was significantly associated with the T2FMM (P < .00001). In oligodendrogliomas with T2FMM, IDH1-mutations or specific differentially expressed genes were not identified. CONCLUSION AND CLINICAL IMPORTANCE: The T2FMM can be readily identified on routinely obtained MRI sequences. It is a specific biomarker for oligodendroglioma in dogs, and was significantly associated with non-enhancing LGO.


Astrocytoma , Brain Neoplasms , Dog Diseases , Glioma , Oligodendroglioma , Humans , Dogs , Animals , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Oligodendroglioma/veterinary , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/veterinary , Retrospective Studies , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging/veterinary , Glioma/diagnostic imaging , Glioma/genetics , Glioma/veterinary , Astrocytoma/genetics , Astrocytoma/veterinary , Mutation , Biomarkers , Dog Diseases/diagnostic imaging , Dog Diseases/genetics
15.
ACS Sens ; 8(6): 2319-2330, 2023 06 23.
Article En | MEDLINE | ID: mdl-37172078

Nowadays, trifluoromethyl sulfonyl fluoride (CF3SO2F) has shown great potential to replace SF6 as an eco-friendly insulation medium in the power industry. In this work, an effective and low-cost design strategy toward ideal gas sensors for the decomposed gas products of CF3SO2F was proposed. The strategy achieved high-throughput screening from a large candidate space based on first-principle calculation and machine learning (ML). The candidate space is made up of different transition metal-embedded graphic carbon nitrides (TM/g-C3N4) owing to their high surface area and subtle electronic structure. Four main noteworthy decomposition gases of CF3SO2F, namely, CF4, SO2, SO2F2, and HF, as well as their initial stable structure on TM/g-C3N4 were determined. The best-performing ML model was established and implemented to predict the interaction strength between gas products and TM/g-C3N4, thus determining the promising gas-sensing materials for target gases with the requirements of interaction strength, recovery time, sensitivity, and selectivity. Further analysis guarantees their stability and reveals the origin of excellent properties as a gas sensor. The high-throughput strategy opens a new avenue of rational and low-cost design principles of desirable gas-sensing materials in an interdisciplinary view.


High-Throughput Screening Assays , Smart Materials , Electronics , Gases , Machine Learning
16.
Int J Radiat Oncol Biol Phys ; 117(2): 370-377, 2023 10 01.
Article En | MEDLINE | ID: mdl-37137444

PURPOSE: Intermediate-risk prostate cancer is a heterogeneous disease state with diverse treatment options. The 22-gene Decipher genomic classifier (GC) retrospectively has shown to improve risk stratification in these patients. We assessed the performance of the GC in men with intermediate-risk disease enrolled in NRG Oncology/RTOG 01-26 with updated follow-up. METHODS AND MATERIALS: After National Cancer Institute approval, biopsy slides were collected from NRG Oncology/RTOG 01-26, a randomized phase 3 trial of men with intermediate-risk prostate cancer randomized to 70.2 Gy versus 79.2 Gy of radiation therapy without androgen deprivation therapy. RNA was extracted from the highest-grade tumor foci to generate the locked 22-gene GC model. The primary endpoint for this ancillary project was disease progression (composite of biochemical failure, local failure, distant metastasis, prostate cancer-specific mortality, and use of salvage therapy). Individual endpoints were also assessed. Fine-Gray or cause-specific Cox multivariable models were constructed adjusting for randomization arm and trial stratification factors. RESULTS: Two-hundred fifteen patient samples passed quality control for analysis. The median follow-up was 12.8 years (range, 2.4-17.7). On multivariable analysis, the 22-gene GC (per 0.1 unit) was independently prognostic for disease progression (subdistribution hazard ratio [sHR], 1.12; 95% confidence interval [CI], 1.00-1.26; P = .04), biochemical failure (sHR, 1.22; 95% CI, 1.10-1.37; P < .001), distant metastasis (sHR, 1.28; 95% CI, 1.06-1.55; P = .01), and prostate cancer-specific mortality (sHR, 1.45; 95% CI, 1.20-1.76; P < .001). Ten-year distant metastasis in GC low-risk patients was 4% compared with 16% for GC high-risk patients. In patients with lower GC scores, the 10-year difference in metastasis-free survival rate between arms was -7%, compared with 21% for higher GC patients (P-interaction = .04). CONCLUSIONS: This study represents the first validation of a biopsy-based gene expression classifier, assessing both its prognostic and predictive value, using data from a randomized phase 3 trial of intermediate-risk prostate cancer. Decipher improves risk stratification and can aid in treatment decision-making in men with intermediate-risk disease.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Prostate-Specific Antigen , Androgen Antagonists , Retrospective Studies , Neoplasm Grading , Genomics , Disease Progression
17.
Breast Cancer Res ; 25(1): 39, 2023 04 12.
Article En | MEDLINE | ID: mdl-37046348

PURPOSE: Ki67 assessed at diagnosis (Ki67baseline) is an important prognostic factor in primary oestrogen receptor-positive (ER +) breast cancer. Proportional change in Ki67 after 2 weeks (∆Ki672week) is associated with clinical benefit from endocrine therapies and residual Ki67 (Ki672week) with recurrence-free survival. The aim was to define the association between Ki67baseline and after aromatase inhibitor (AI) exposure ∆Ki672week and Ki672week with key prognostic and biologic factors utilising data from the POETIC study. PATIENTS AND METHODS: In POETIC 4480 postmenopausal patients with primary ER and/or PgR + breast cancer were randomised 2:1 to 2 weeks' presurgical AI (anastrozole or letrozole) or no presurgical treatment (control). Ki67 was measured centrally in core-cut biopsies taken prior to AI and in core-cuts or the excision biopsy at surgery. Relationships between the Ki67 and biologic factors were explored using linear regression. RESULTS: Established associations of Ki67baseline with biologic factors including PgR status, tumour grade, tumour size, histological subtype, nodal status, and vascular invasion were confirmed in the HER2- subpopulation. In the HER2 + subpopulation only grade and tumour size were significantly associated with Ki67baseline. In control group Ki672week was 18% lower than Ki67baseline (p < 0.001) when Ki672week was measured in excision biopsies but not when measured in core-cuts. Median suppression by AIs (∆Ki672week) was 79.3% (IQR: -89.9 to -54.6) and 53.7% (IQR: -78.9 to -21.1) for HER2-negative and HER2-positive cases, respectively. Significantly less suppression occurred in PgR- vs PgR + and HER2 + vs HER2- tumours which remained apparent after adjustment for 2-week sample type. CONCLUSIONS: The magnitude of this study allowed characterisation of relationships between Ki67baseline, ∆Ki672week and Ki672week with high degrees of confidence providing a reference source for other studies. Lower values of Ki67 occur when measured on excision biopsies and could lead to apparent but artefactual decreases in Ki67: this should be considered when either ∆Ki672week or Ki672week is used in routine clinical practice to aid treatment decisions or in clinical trials assessing new drug therapies.


Aromatase Inhibitors , Breast Neoplasms , Female , Humans , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/pathology , Ki-67 Antigen/genetics , Letrozole/therapeutic use , Receptor, ErbB-2/genetics , Receptors, Progesterone
18.
Nat Commun ; 14(1): 2483, 2023 Apr 29.
Article En | MEDLINE | ID: mdl-37120587

Despite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (Tc) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material Fe4GeTe2 with the Tc reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations. Theoretical calculations suggested that the interface-induced right shift of the localized states for unpaired Fe d electrons is the reason for the enhanced Tc, which was confirmed by ultraviolet photoelectron spectroscopy. Moreover, by precisely tailoring Fe concentration we achieved arbitrary control of magnetic anisotropy between out-of-plane and in-plane without inducing any phase disorders. Our finding sheds light on the high potential of Fe4GeTe2 in spintronics, which may open opportunities for room-temperature application of all-vdW spintronic devices.

19.
PeerJ ; 11: e14879, 2023.
Article En | MEDLINE | ID: mdl-36874959

Background: Chronic kidney disease (CKD) poses a major public health burden. Diabetes mellitus (DM) is one of the major causes of CKD. In patients with DM, it can be difficult to differentiate diabetic kidney disease (DKD) from other causes of glomerular damage; it should not be assumed that all DM patients with decreased eGFR and/or proteinuria have DKD. Renal biopsy is the standard for definitive diagnosis, but other less invasive methods may provide clinical benefit. As previously reported, Raman spectroscopy of CKD patient urine with statistical and chemometric modeling may provide a novel, non-invasive methodology for discriminating between renal pathologies. Methods: Urine samples were collected from renal biopsied and non-biopsied patients presenting with CKD secondary to DM and non-diabetic kidney disease. Samples were analyzed by Raman spectroscopy, baselined with the ISREA algorithm, and subjected to chemometric modeling. Leave-one-out cross-validation was used to assess the predictive capabilities of the model. Results: This proof-of-concept study consisted of 263 samples, including renal biopsied, non-biopsied diabetic and non-diabetic CKD patients, healthy volunteers, and the Surine™ urinalysis control. Urine samples of DKD patients and those with immune-mediated nephropathy (IMN) were distinguished from one another with 82% sensitivity, specificity, positive-predictive value (PPV), and negative-predictive value (NPV). Among urine samples from all biopsied CKD patients, renal neoplasia was identified in urine with 100% sensitivity, specificity, PPV, and NPV, and membranous nephropathy was identified with 66.7% sensitivity, 96.4% specificity, 80.0% PPV, and 93.1% NPV. Finally, DKD was identified among a population of 150 patient urine samples containing biopsy-confirmed DKD, other biopsy-confirmed glomerular pathologies, un-biopsied non-diabetic CKD patients (no DKD), healthy volunteers, and Surine™ with 36.4% sensitivity, 97.8% specificity, 57.1% PPV, and 95.1% NPV. The model was used to screen un-biopsied diabetic CKD patients and identified DKD in more than 8% of this population. IMN in diabetic patients was identified among a similarly sized and diverse population with 83.3% sensitivity, 97.7% specificity, 62.5% PPV, and 99.2% NPV. Finally, IMN in non-diabetic patients was identified with 50.0% sensitivity, 99.4% specificity, 75.0% PPV, and 98.3% NPV. Conclusions: Raman spectroscopy of urine with chemometric analysis may be able to differentiate between DKD, IMN, and other glomerular diseases. Future work will further characterize CKD stages and glomerular pathology, while assessing and controlling for differences in factors such as comorbidities, disease severity, and other lab parameters.


Body Fluids , Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Kidney , Kidney Glomerulus
20.
Nanoscale ; 15(7): 3496-3503, 2023 Feb 16.
Article En | MEDLINE | ID: mdl-36723054

The emerging two-dimensional (2D) semiconductors hold a promising prospect for sustaining Moore's law benefitting from the excellent device electrostatics with narrowed channel length. Here, the performance limits of sub-5 nm InSe and In2SSe metal-oxide-semiconductor field-effect transistors (MOSFETs) are explored by ab initio quantum transport simulations. The van der Waals heterostructures prepared by assembling different two-dimensional materials have emerged as a new design of artificial materials with promising physical properties. In this study, device performance was investigated utilizing InSe/In2SSe van der Waals heterostructure as the channel material. Both the monolayer and heterostructure devices can scale Moore's law down to 5 nm. A heterostructure transistor exhibits a higher on-state current and faster switching speed compared with isolated monolayer transistors. This work proves that the sub-5 nm InSe/In2SSe MOSFET can satisfy both the low power and high-performance requirements for the international technology roadmap for semiconductors in the next decade and can provide a feasible approach for enhancing device performance.

...