Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J B ; 97(6): 84, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933092

RESUMEN

Abstract: Effects of ballistic transport on the temperature profiles and thermal resistance in nanowires are studied. Computer simulations of nanowires between a heat source and a heat sink have shown that in the middle of such wires the temperature gradient is reduced compared to Fourier's law with steep gradients close to the heat source and sink. In this work, results from molecular dynamics and phonon Monte Carlo simulations of the heat transport in nanowires are compared to a radiator model which predicts a reduced gradient with discrete jumps at the wire ends. The comparison shows that for wires longer than the typical mean free path of phonons the radiator model is able to account for ballistic transport effects. The steep gradients at the wire ends are then continuous manifestations of the discrete jumps in the model.

2.
Beilstein J Nanotechnol ; 14: 586-602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228743

RESUMEN

The thermal conductance of nanowires is an oft-explored quantity, but its dependence on the nanowire shape is not completely understood. The behaviour of the conductance is examined as kinks of varying angular intensity are included into nanowires. The effects on thermal transport are evaluated through molecular dynamics simulations, phonon Monte Carlo simulations and classical solutions of the Fourier equation. A detailed look is taken at the nature of heat flux within said systems. The effects of the kink angle are found to be complex, influenced by multiple factors including crystal orientation, details of transport modelling, and the ratio of mean free path to characteristic system lengths. The effect of varying phonon reflection specularity on the heat flux is also examined. It is found that, in general, the flow of heat through systems simulated through phonon Monte Carlo methods is concentrated into a channel smaller than the wire dimensions, while this is not the case in the classical solutions of the Fourier model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...