Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Hematol ; 136: 104257, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897373

RESUMEN

Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Pez Cebra , Animales , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Pez Cebra/embriología , Ratones , Desarrollo Embrionario , Humanos , Embrión de Mamíferos/citología
2.
Cell Rep ; 39(11): 110957, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705037

RESUMEN

Hematopoietic stem cells (HSCs) express a large variety of cell surface receptors that are associated with acquisition of self-renewal and multipotent properties. Correct expression of these receptors depends on a delicate balance between cell surface trafficking, recycling, and degradation and is controlled by the microtubule network and Golgi apparatus, whose roles have hardly been explored during embryonic/fetal hematopoiesis. Here we show that, in the absence of CLASP2, a microtubule-associated protein, the overall production of HSCs is reduced, and the produced HSCs fail to self-renew and maintain their stemness throughout mouse and zebrafish development. This phenotype can be attributed to decreased cell surface expression of the hematopoietic receptor c-Kit, which originates from increased lysosomal degradation in combination with a reduction in trafficking to the plasma membrane. A dysfunctional Golgi apparatus in CLASP2-deficient HSCs seems to be the underlying cause of the c-Kit expression and signaling imbalance.


Asunto(s)
Células Madre Hematopoyéticas , Pez Cebra , Animales , Ratones , Hematopoyesis/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo
3.
Front Immunol ; 12: 790379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899758

RESUMEN

The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.


Asunto(s)
Genómica/tendencias , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Análisis de la Célula Individual/tendencias , Nicho de Células Madre , Animales , Aorta/embriología , Técnicas de Cultivo de Célula/tendencias , Linaje de la Célula , Células Cultivadas , Difusión de Innovaciones , Perfilación de la Expresión Génica/tendencias , Regulación del Desarrollo de la Expresión Génica , Gónadas/embriología , Humanos , Mesonefro/embriología , Fenotipo , Proteómica/tendencias , Transducción de Señal , Transcriptoma
5.
Nat Commun ; 12(1): 3851, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158501

RESUMEN

Positional information driving limb muscle patterning is contained in connective tissue fibroblasts but not in myogenic cells. Limb muscles originate from somites, while connective tissues originate from lateral plate mesoderm. With cell and genetic lineage tracing we challenge this model and identify an unexpected contribution of lateral plate-derived fibroblasts to the myogenic lineage, preferentially at the myotendinous junction. Analysis of single-cell RNA-sequencing data from whole limbs at successive developmental stages identifies a population displaying a dual muscle and connective tissue signature. BMP signalling is active in this dual population and at the tendon/muscle interface. In vivo and in vitro gain- and loss-of-function experiments show that BMP signalling regulates a fibroblast-to-myoblast conversion. These results suggest a scenario in which BMP signalling converts a subset of lateral plate mesoderm-derived cells to a myogenic fate in order to create a boundary of fibroblast-derived myonuclei at the myotendinous junction that controls limb muscle patterning.


Asunto(s)
Tipificación del Cuerpo/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Somitos/metabolismo , Animales , Linaje de la Célula/genética , Células Cultivadas , Embrión de Pollo , Extremidades/embriología , Fibroblastos/citología , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somitos/citología , Somitos/embriología
6.
Nat Cell Biol ; 23(4): 322-329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837285

RESUMEN

De novo blood vessel formation occurs through coalescence of endothelial cells (ECs) into a cord-like structure, followed by lumenization either through cell-1-3 or cord-hollowing4-7. Vessels generated in this manner are restricted in diameter to one or two ECs, and these models fail to explain how vasculogenesis can form large-diameter vessels. Here, we describe a model for large vessel formation that does not require a cord-like structure or a hollowing step. In this model, ECs coalesce into a network of struts in the future lumen of the vessel, a process dependent upon bone morphogenetic protein signalling. The vessel wall forms around this network and consists initially of only a few patches of ECs. To withstand external forces and to maintain the shape of the vessel, strut formation traps erythrocytes into compartments to form a rigid structure. Struts gradually prune and ECs from struts migrate into and become part of the vessel wall. Experimental severing of struts resulted in vessel collapse, disturbed blood flow and remodelling defects, demonstrating that struts enable the patency of large vessels during their formation.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/fisiología , Morfogénesis/genética , Neovascularización Fisiológica/genética , Vasos Sanguíneos/metabolismo , Células Endoteliales/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Humanos
7.
Blood ; 136(7): 831-844, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32457985

RESUMEN

The defined location of a stem cell within a niche regulates its fate, behavior, and molecular identity via a complex extrinsic regulation that is far from being fully elucidated. To explore the molecular characteristics and key components of the aortic microenvironment, where the first hematopoietic stem cells are generated during development, we performed genome-wide RNA tomography sequencing on zebrafish, chicken, mouse, and human embryos. The resulting anterior-posterior and dorsal-ventral transcriptional maps provided a powerful resource for exploring genes and regulatory pathways active in the aortic microenvironment. By performing interspecies comparative RNA sequencing analyses and functional assays, we explored the complexity of the aortic microenvironment landscape and the fine-tuning of various factors interacting to control hematopoietic stem cell generation, both in time and space in vivo, including the ligand-receptor couple ADM-RAMP2 and SVEP1. Understanding the regulatory function of the local environment will pave the way for improved stem cell production in vitro and clinical cell therapy.


Asunto(s)
Aorta/embriología , Células Madre Hematopoyéticas/citología , ARN/análisis , Nicho de Células Madre/genética , Tomografía , Animales , Animales Modificados Genéticamente , Aorta/citología , Rastreo Celular/métodos , Embrión de Pollo , Embrión de Mamíferos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , ARN/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Especificidad de la Especie , Tomografía/métodos , Tomografía/veterinaria , Pez Cebra/embriología , Pez Cebra/genética
9.
Nat Cell Biol ; 21(11): 1334-1345, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685991

RESUMEN

It is well established that haematopoietic stem and progenitor cells (HSPCs) are generated from a transient subset of specialized endothelial cells termed haemogenic, present in the yolk sac, placenta and aorta, through an endothelial-to-haematopoietic transition (EHT). HSPC generation via EHT is thought to be restricted to the early stages of development. By using experimental embryology and genetic approaches in birds and mice, respectively, we document here the discovery of a bone marrow haemogenic endothelium in the late fetus/young adult. These cells are capable of de novo producing a cohort of HSPCs in situ that harbour a very specific molecular signature close to that of aortic endothelial cells undergoing EHT or their immediate progenies, i.e., recently emerged HSPCs. Taken together, our results reveal that HSPCs can be generated de novo past embryonic stages. Understanding the molecular events controlling this production will be critical for devising innovative therapies.


Asunto(s)
Células de la Médula Ósea/metabolismo , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Animales , Animales Modificados Genéticamente , Aorta/citología , Aorta/metabolismo , Células de la Médula Ósea/citología , Diferenciación Celular , Pollos , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Feto , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hemangioblastos/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Heterocigoto , Homocigoto , Masculino , Ratones , Embarazo , Saco Vitelino/citología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo
10.
Adv Healthc Mater ; 8(10): e1801444, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30941927

RESUMEN

Niches in the bone marrow regulate hematopoietic stem and progenitor cell (HSPC) fate and behavior through cell-cell interactions and soluble factor secretion. The niche-HSPC crosstalk is a very complex process not completely elucidated yet. To aid further investigation of this crosstalk, a functional in vitro 3D model that closely represents the main supportive compartments of the bone marrow is developed. Different combinations of human stromal cells and hydrogels are tested for their potential to maintain CD34+ HSPCs. Cell viability, clonogenic hematopoietic potential, and surface marker expression are assessed over time. Optimal HSPC support is obtained in presence of adipogenic and osteogenic cells, together with progenitor derived endothelial cells. When cultured in a bioactive hydrogel, the supportive cells self-assemble into a hypoxic stromal network, stimulating CD34+ CD38+ cell formation, while maintaining the pool of CD34+ 38- HSPCs. HSPC clusters colocalize with the stromal networks, in close proximity to sinusoidal clusters of CD31+ endothelial cells. Importantly, the primary in vitro niche model supports HSPCs with no cytokine addition. Overall, the engineered primary 3D bone marrow environment provides an easy and reliable model to further investigate interactions between HSPCs and their endosteal and perivascular niches, in the context of normal hematopoiesis or blood-related diseases.


Asunto(s)
Células Madre Hematopoyéticas/citología , Hidrogeles/química , Adipogénesis/efectos de los fármacos , Alginatos/química , Antígenos CD34/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/química , Combinación de Medicamentos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Hidrogeles/farmacología , Laminina/química , Osteogénesis/efectos de los fármacos , Proteoglicanos/química , Nicho de Células Madre
11.
Cell Rep ; 24(1): 130-141, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972775

RESUMEN

Microglia, the tissue-resident macrophages of the CNS, represent major targets for therapeutic intervention in a wide variety of neurological disorders. Efficient reprogramming protocols to generate microglia-like cells in vitro using patient-derived induced pluripotent stem cells will, however, require a precise understanding of the cellular and molecular events that instruct microglial cell fates. This remains a challenge since the developmental origin of microglia during embryogenesis is controversial. Here, using genetic tracing in zebrafish, we uncover primitive macrophages as the unique source of embryonic microglia. We also demonstrate that this initial population is transient, with primitive microglia later replaced by definitive microglia that persist throughout adulthood. The adult wave originates from cmyb-dependent hematopoietic stem cells. Collectively, our work challenges the prevailing model establishing erythro-myeloid progenitors as the sole and direct microglial precursor and provides further support for the existence of multiple waves of microglia, which originate from distinct hematopoietic precursors.


Asunto(s)
Embrión no Mamífero/citología , Macrófagos/citología , Microglía/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Desarrollo Embrionario , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Cinética , Macrófagos/metabolismo
12.
Nat Commun ; 9(1): 2517, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955049

RESUMEN

Haematopoietic stem cells (HSCs) are generated from haemogenic endothelial (HE) cells via the formation of intra-aortic haematopoietic clusters (IAHCs) in vertebrate embryos. The molecular events controlling endothelial specification, endothelial-to-haematopoietic transition (EHT) and IAHC formation, as it occurs in vivo inside the aorta, are still poorly understood. To gain insight in these processes, we performed single-cell RNA-sequencing of non-HE cells, HE cells, cells undergoing EHT, IAHC cells, and whole IAHCs isolated from mouse embryo aortas. Our analysis identified the genes and transcription factor networks activated during the endothelial-to-haematopoietic switch and IAHC cell maturation toward an HSC fate. Our study provides an unprecedented complete resource to study in depth HSC generation in vivo. It will pave the way for improving HSC production in vitro to address the growing need for tailor-made HSCs to treat patients with blood-related disorders.


Asunto(s)
Aorta/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Transcriptoma , Animales , Aorta/citología , Aorta/crecimiento & desarrollo , Diferenciación Celular , Embrión de Mamíferos , Femenino , Ontología de Genes , Redes Reguladoras de Genes , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Análisis de la Célula Individual
13.
Oncoimmunology ; 7(6): e1434465, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872571

RESUMEN

Bone marrow niches support multiple myeloma, providing signals and cell-cell interactions essential for disease progression. A 3D bone marrow niche model was developed, in which supportive multipotent mesenchymal stromal cells and their osteogenic derivatives were co-cultured with endothelial progenitor cells. These co-cultured cells formed networks within the 3D culture, facilitating the survival and proliferation of primary CD138+ myeloma cells for up to 28 days. During this culture, no genetic drift was observed within the genomic profile of the primary myeloma cells, indicating a stable outgrowth of the cultured CD138+ population. The 3D bone marrow niche model enabled testing of a novel class of engineered immune cells, so called TEGs (αßT cells engineered to express a defined γδTCR) on primary myeloma cells. TEGs were engineered and tested from both healthy donors and myeloma patients. The added TEGs were capable of migrating through the 3D culture, exerting a killing response towards the primary myeloma cells in 6 out of 8 donor samples after both 24 and 48 hours. Such a killing response was not observed when adding mock transduced T cells. No differences were observed comparing allogeneic and autologous therapy. The supporting stromal microenvironment was unaffected in all conditions after 48 hours. When adding TEG therapy, the 3D model surpassed 2D models in many aspects by enabling analyses of specific homing, and both on- and off-target effects, preparing the ground for the clinical testing of TEGs. The model allows studying novel immunotherapies, therapy resistance mechanisms and possible side-effects for this incurable disease.

14.
Tissue Eng Part C Methods ; 24(5): 300-312, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29652626

RESUMEN

The bone marrow microenvironment is the preferred location of multiple myeloma, supporting tumor growth and development. It is composed of a collection of interacting subniches, including the endosteal and perivascular niche. Current in vitro models mimic either of these subniches. By developing a model combining both niches, this study aims to further enhance the ability to culture primary myeloma cells in vitro. Also, the dependency of myeloma cells on each niche was studied. A 3D bone marrow model containing two subniches was created using 3D bioprinting technology. We used a bioprintable pasty calcium phosphate cement (CPC) scaffold with seeded osteogenic multipotent mesenchymal stromal cells (O-MSCs) to model the endosteal niche, and Matrigel containing both endothelial progenitor cells (EPCs) and MSCs to model the perivascular niche. Within the model containing one or both of the niches, primary CD138+ myeloma cells were cultured and analyzed for both survival and proliferation. The 3D bone marrow model with combined subniches significantly increasing the proliferation of CD138+ myeloma cells compared to both environments separately. The developed model showed an essential role of the perivascular niche over the endosteal niche in supporting myeloma cells. The developed model can be used to study the expansion of primary myeloma cells and their interactions with varying bone marrow subniches.


Asunto(s)
Médula Ósea/irrigación sanguínea , Microambiente Celular , Modelos Biológicos , Mieloma Múltiple/patología , Cementos para Huesos/farmacología , Fosfatos de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química
16.
Dev Biol ; 428(2): 318-327, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28728681

RESUMEN

Hematopoietic stem cells (HSCs) are at the origin of adult hematopoiesis, providing an organism with all blood cell types needed throughout life. During embryonic development a first wave of hematopoiesis (independent of HSCs) allows the survival and growth of the embryo until birth. A second wave of hematopoiesis that will last into adulthood depends on the production of HSCs that begins at mid-gestation in large arteries such as the aorta. HSC production occurs through a hemogenic endothelial to hematopoietic transition (EHT) process and the formation of hematopoietic clusters in most vertebrate species. Advances in understanding EHT, cluster formation and HSC production were triggered by combined progresses made in the development of in vivo assays, microscopy, imaging and fluorescence tools. Here, we review the current knowledge on developmental hematopoiesis with a focus on the first step of HSC production in the aorta and how microscopic approaches have contributed to a better understanding of the vital process of blood cell formation.


Asunto(s)
Desarrollo Embrionario/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Biología Evolutiva/historia , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos , Microscopía/historia , Investigación con Células Madre/historia
17.
Development ; 144(13): 2352-2363, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526756

RESUMEN

Hematopoietic stem cells (HSCs), which are responsible for blood cell production, are generated during embryonic development. Human and chicken embryos share features that position the chicken as a reliable and accessible alternative model to study developmental hematopoiesis. However, the existence of HSCs has never been formally proven in chicken embryos. Here, we have established a complete cartography and quantification of hematopoietic cells in the aorta during development. We demonstrate the existence of bona fide HSCs, originating from the chicken embryo aorta (and not the yolk sac, allantois or head), through an in vivo transplantation assay. Embryos transplanted in ovo with GFP embryonic tissues on the chorio-allantoic membrane provided multilineage reconstitution in adulthood. Historically, most breakthrough discoveries in the field of developmental hematopoiesis were first made in birds and later extended to mammals. Our study sheds new light on the avian model as a valuable system to study HSC production and regulation in vivo.


Asunto(s)
Linaje de la Célula , Pollos/metabolismo , Células Madre Hematopoyéticas/citología , Animales , Aorta/citología , Aorta/embriología , Linfocitos B/citología , Proliferación Celular , Supervivencia Celular , Embrión de Pollo , Membrana Corioalantoides/trasplante , Desarrollo Embrionario , Proteínas Fluorescentes Verdes/metabolismo , Hematopoyesis , Saco Vitelino/embriología
19.
Nat Cell Biol ; 18(1): 21-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619147

RESUMEN

In vertebrates, the first haematopoietic stem cells (HSCs) with multi-lineage and long-term repopulating potential arise in the AGM (aorta-gonad-mesonephros) region. These HSCs are generated from a rare and transient subset of endothelial cells, called haemogenic endothelium (HE), through an endothelial-to-haematopoietic transition (EHT). Here, we establish the absolute requirement of the transcriptional repressors GFI1 and GFI1B (growth factor independence 1 and 1B) in this unique trans-differentiation process. We first demonstrate that Gfi1 expression specifically defines the rare population of HE that generates emerging HSCs. We further establish that in the absence of GFI1 proteins, HSCs and haematopoietic progenitor cells are not produced in the AGM, revealing the critical requirement for GFI1 proteins in intra-embryonic EHT. Finally, we demonstrate that GFI1 proteins recruit the chromatin-modifying protein LSD1, a member of the CoREST repressive complex, to epigenetically silence the endothelial program in HE and allow the emergence of blood cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Histona Demetilasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Aorta/citología , Aorta/embriología , Diferenciación Celular/fisiología , Embrión de Mamíferos/citología , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Ratones
20.
Cardiovasc Res ; 107(3): 352-63, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25987546

RESUMEN

Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra- and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by a set of molecules, i.e. integrins and chemokine receptors, which are also described for the recruitment of differentiated innate immune cells. In this review, an overview will be given on fetal haematopoiesis as well as trafficking of HSCs during fetal life. In addition, we will focus on the appearance of the first differentiated neutrophils and monocytes in the fetal circulation and describe how they acquire the ability to roll, adhere, and transmigrate into inflamed fetal tissue. Furthermore, we will discuss other effector functions of innate immune cells evolving during fetal ontogeny.


Asunto(s)
Desarrollo Fetal/inmunología , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Monocitos/fisiología , Neutrófilos/fisiología , Animales , Humanos , Células Mieloides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA