Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Bioresour Technol ; 402: 130818, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735342

This study aims to analyse the potential availability of essential metals including as Co, Fe, Ni, Zn, Mn, and Cu and non-essential metals such as Pb, Cr, and Cd within anaerobic mono- and co-digestion of pig manure and maize. The metals partitioning was determined using the Modified BCR (European Community Bureau of Reference) sequential extraction at defined intervals over a 45-days period, correlating changes in metals speciation with key digestion variables. The findings revealed that Cr, Cu, Fe, and Pb were predominantly associated with the oxidisable fraction, while Zn, Mn, and Cd were potentially available in both processes. Notably, NH4+-N and the VFAs, except propionic acid, correlated significantly with the available fractions of Co, Mn, Ni, Zn, Cr, and Pb during mono-digestion of pig manure. The wider pH range and the chemical properties of the feedstock in co-digestion resulted in varied correlations between the metals availability and the digestion variables.


Manure , Metals , Zea mays , Animals , Zea mays/chemistry , Anaerobiosis , Swine , Hydrogen-Ion Concentration , Sus scrofa
2.
Chemosphere ; 312(Pt 1): 137229, 2023 Jan.
Article En | MEDLINE | ID: mdl-36372342

Over recent years, pyrolysis has grown into a mature technology with added value for producing soil improvers. Further innovations of this technology lie in developing tailor-made products from specific feedstocks (or mixtures thereof) in combination with adjusted mixing ratio-temperature regimes. In this context, co-pyrolysis of pig manure (PM) and the invasive plant Japanese knotweed (JK) at different mixture ratios (w/w) of 3:1 (P3J1), 1:1 (P1J1), and 1:3 (P1J3) and varying temperatures (400-700 °C) was studied to address the low carbon properties and heavy metals (HMs) risks of manure-derive biochars and beneficially ameliorate the bio-invasion situation by creating value from the plant biomass. Co-pyrolysis of PM with JK increased by nearly 1.5 folds the fixed carbon contents in the combined feedstock biochars obtained at 600 °C compared with PM-derived biochar alone, and all combined feedstock biochars met the requirements for soil improvement and carbon sequestration. The total HMs in PM biochars were significantly reduced by adding JK. The combined feedstock biochar P1J1 generated at 600 °C was the most effective in transforming Cu and Zn into more stable forms, accordingly reducing the associated environmental risk of heavy metal leaching from the biochar. In addition, the accumulation of macronutrients can be an added benefit of the co-pyrolysis process, and P1J1-600 was also the biochar that retained the most nutrients (P, Ca, Mg, and K).


Manure , Metals, Heavy , Swine , Animals , Pyrolysis , Soil , Plant Weeds , Charcoal , Metals, Heavy/analysis , Temperature , Carbon
3.
Sci Rep ; 12(1): 14176, 2022 08 19.
Article En | MEDLINE | ID: mdl-35986201

Struvite (St) recovered from wastewaters is a sustainable option for phosphorus (P) recovery and fertilization, whose solubility is low in water and high in environments characterized by a low pH, such as acidic soils. To broaden the use of struvite in the field, its application as granules is recommended, and thus the way of application should be optimized to control the solubility. In this study struvite slow-release fertilizers were designed by dispersing St particles (25, 50, and 75 wt%) in a biodegradable and hydrophilic matrix of thermoplastic starch (TPS). It was shown that, in citric acid solution (pH = 2), TPS promoted a steadier P-release from St compared to the pure St pattern. In a pH neutral sand, P-diffusion from St-TPS fertilizers was slower than from the positive control of triple superphosphate (TSP). Nevertheless, St-TPS featured comparable maize growth (i.e. plant height, leaf area, and biomass) and similar available P as TSP in sand after 42 days of cultivation. These results indicated that St-TPS slow P release could provide enough P for maize in sand, achieving a desirable agronomic efficiency while also reducing P runoff losses in highly permeable soils.


Fertilizers , Sand , Fertilization , Fertilizers/analysis , Phosphates/chemistry , Phosphorus/chemistry , Soil/chemistry , Struvite/chemistry , Zea mays
4.
Chemosphere ; 265: 129082, 2021 Feb.
Article En | MEDLINE | ID: mdl-33309446

Sewage sludge was excluded from the list of component materials for the production of EU fertilizing products and it was banned as feedstock to produce pyrolysis & gasification materials in European Commission's technical proposals for selected new fertilizing materials under the Regulation 2019/1009 (STRUBIAS report). This exclusion of pyrolysis as a viable way to treat sewage sludge was mainly due to the lack of data on the fate of organic pollutants at pyrolysis conditions. In this work, we are addressing this knowledge gap. We studied slow pyrolysis as a potential process to efficiently treat organic pollutants present in stabilized sewage sludge. Sewage sludge was pyrolyzed in a quartz fixed bed reactor at temperatures of 400-800 °C for 2 h and the sludge and resulting sludge-chars were analyzed for the presence of four groups of organic pollutants, namely (i) polychlorinated biphenyls (PCBs), (ii) polycyclic aromatic hydrocarbons (PAHs), (iii) pharmaceuticals, and (iv) endocrine-disrupting and hormonal compounds. Pyrolysis at ≥ 400 °C effectively removed pharmaceuticals (group iii) to below detection limits, whereas pyrolysis at temperatures higher than 600 °C was required to remove more than 99.8% of the compounds from groups i, ii and iv. Based on these findings, we propose, that high temperature (>600 °C) slow pyrolysis can satisfactory remove organic pollutants from the resulting sludge-char, which could be safely applied as soil improver.


Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Pyrolysis , Sewage , Temperature
5.
Front Plant Sci ; 11: 572741, 2020.
Article En | MEDLINE | ID: mdl-33329631

Intensive agriculture and horticulture heavily rely on the input of fertilizers to sustain food (and feed) production. However, high carbon footprint and pollution are associated with the mining processes of P and K, and the artificial nitrogen fixation for the production of synthetic fertilizers. Organic fertilizers or recovered nutrients from different waste sources can be used to reduce the environmental impact of fertilizers. We tested two recovered nutrients with slow-release patterns as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as a nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in lupine plants. Plant performance was not affected by the fertilizer applied; however, N recovery was higher from the organic fertilizer than from struvite. As root architecture is fundamental for plant productivity, variations in root structure and length as a result of soil nutrient availability driven by plant-bacteria interactions were compared showing also no differences between fertilizers. However, fertilized plants were considerably different in the root length and morphology compared with the no fertilized plants. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed that the fertilizer applied had a significant impact on the associations and functionality of the bacteria inhabiting the growing medium used. The type of fertilizer significantly influenced the interindividual dissimilarities in the most abundant genera between treatments. This means that different plant species have a distinct effect on modulating the associated microbial community, but in the case of lupine, the fertilizer had a bigger effect than the plant itself. These novel insights on interactions between recovered fertilizers, plant, and associated microbes can contribute to developing sustainable crop production systems.

6.
Sci Rep ; 9(1): 9561, 2019 07 02.
Article En | MEDLINE | ID: mdl-31266970

Synthetic fertilizer production is associated with a high environmental footprint, as compounds typically dissolve rapidly leaching emissions to the atmosphere or surface waters. We tested two recovered nutrients with slower release patterns, as promising alternatives for synthetic fertilizers: struvite and a commercially available organic fertilizer. Using these fertilizers as nitrogen source, we conducted a rhizotron experiment to test their effect on plant performance and nutrient recovery in juvenile tomato plants. Plant performance was significantly improved when organic fertilizer was provided, promoting higher shoot biomass. Since the microbial community influences plant nitrogen availability, we characterized the root-associated microbial community structure and functionality. Analyses revealed distinct root microbial community structure when different fertilizers were supplied. However, plant presence significantly increased the similarity of the microbial community over time, regardless of fertilization. Additionally, the presence of the plant significantly reduced the potential ammonia oxidation rates, implying a possible role of the rhizosheath microbiome or nitrification inhibition by the plant. Our results indicate that nitrifying community members are impacted by the type of fertilizer used, while tomato plants influenced the potential ammonia-oxidizing activity of nitrogen-related rhizospheric microbial communities. These novel insights on interactions between recovered fertilizers, plant and associated microbes can contribute to develop sustainable crop production systems.


Fertilizers , Microbiota , Soil Microbiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Ammonia/chemistry , Ammonia/metabolism , Biomass , Culture Media , Hydrogen-Ion Concentration , Oxidation-Reduction , Plant Development
...